富士北麓水資源の保全と活用のための 水文科学的研究

Hydrologic Science Research for the Management and Utilization of Ground Water Resources in the Northern Piedmont Area of Mount Fuji

富士北麓水資源の保全と活用のための水文科学的研究

小田切幸次¹·佐野 哲也²·村中 康秀³·神谷 貴文³·内山 高⁴·山本 真也⁴·長谷川達也⁴·中村 高志²· 渡辺 雅之³·吉澤 一家¹·内山美恵子⁵·赤塚 慎⁴·古屋 洋一³

(¹山梨県衛生環境研究所,²山梨大学国際流域環境研究センター,³静岡県環境衛生科学研究所,⁴山梨県富士山科学研究所, ⁵都留文科大学)

Hydrologic science research for the management and utilization of ground water resources in the northern piedmont area of Mount Fuji

Koji ODAGIRI², Tetsuya SANO⁴, Yasuhide MURANAKA³, Takafumi KAMITANI³, Takashi UCHIYAMA¹, Shinya YAMAMOTO¹, Tatsuya HASEGAWA¹, Takashi NAKAMURA⁴, Masayuki WATANABE³, Kazuya YOSHIZAWA², Mieko UCHIYAMA⁵, Shin AKATSUKA¹and Yoichi FURUYA³ (¹Yamanashi Institute for Public Health, ²University of Yamanashi, ³Shizuoka Institute of Environment and Hygiene,⁴Mount Fuji Research Institute, ⁵Tsuru University)

要約:山梨県内のうち,富士北麓地域では生活・産業用水の水源のほぼすべてを地下水等に依存している。本研究では富 士北麓の水資源としての地下水等の量的および質的安全性を確保するため、水文科学的研究を行っている。

この中の基本的な水収支の解明に当たって、導入部にあたる降雨量を包括的に捉えるため、複数のXバンドMPレーダに 基づいた合成データを用いて雨量推定を行った.その結果、富士山全体をカバーしつつ、狭い領域の降雨も緻密に捉えら れることが分かった.さらに降水グリッド抽出方法について改善を検討したところ、特に対流性降雨事例において降雨量 の推定精度を向上させることができた.

また、富士北麓の水の由来、起源を探るために水質等の調査・分析を行っている.本年度は忍野八海地域の流量調査を行っ た.その結果、忍野八海地域全体として0.396m³/sを得た.ただし、人工的な流入も見られるため今後個々の湧水量を測 定し、検証する必要も出てきた.さらに湧水の関係で、湖底湧水の存在が指摘される河口湖において溶存バナジウム濃度 の鉛直分布を調べた.その結果、夏季の水温躍層以深でバナジウム濃度の低下が見られ、水中でのスキャベンジング(除 去)が示唆された.また、鵜の島西部で水質及び湖内流動観測を行った結果、南北両岸の崖斜面上で水温の高い水塊が確 認され御坂山地及び富士山溶岩からの湧水が示唆された.

Abstract: The resource of potable and industrial water supply is dependent more than ca.60% on the groundwater in Yamanashi Prefecture, and almost all in Mount Fuji northern foot area, especially. Therefore, we demonstrates in this paper that, to ensure the quality and quantitative safety of the groundwater and spring as water resources in Mount Fuji northern foot area.

To estimate the rainfall amount with water budget comprehensively, we investigated the accuracies of the rainfall amounts derived by the observations of plural X-band multi-parameter radars (X-MP radar) positioned in University of Yamanashi and Shizuoka prefecture. As a result, we found that plural X-MP radars covered the whole of Mount Fuji and derived detail rainfall amount in a narrow region. In addition, we reviewed the method of extraction from grid data, improved the accuracies of the rainfall amounts derived by the observations of plural X-MP radars in case of convective rain.

And also we conducted a water quality and discharge survey of Oshino Hakkai Springs. Oshino Hakkai Springs discharge about 0.396 m3/s into the nearby river. Finally, Vertical distribution of vanadium concentrations in Lake Kawaguchi show significantly decreased below thermocline during summer, suggesting that vanadium is likely scavenged in water column. The lake survey revealed relatively high water temperature on the northern and southern slopes of the west lake basin, suggesting water inflow from both Misaka Mountains and lava plateau of Mount Fuji.

1. 緒 言

山梨県は生活・産業用水の水源の約6割を,とくに富 士北麓地域ではほぼすべてを地下水等に依存している. さらに,近年では富士山の地下水の水質特性から,富士 山麓ではミネラルウォーター関連産業が急発展し,水資 源としての地下水の量と質の把握が急務となっている. しかしながら,富士山麓地域では火山山麓特有の複雑 な地質構造から地下水流動の実態が十分解明されていな い.このような状況で,富士山麓,特に富士北麓で将来 にわたり安全な地下水・湧水を安定的に利用していくた めには、富士北麓での水資源の総合管理・保全計画が必 要とされる.さらに、世界文化遺産「富士山」の構成資 産の一つとしての湧水群や富士五湖の水環境を将来にわ たって保全していくためにも、富士山としての水環境の 保全対策が必要とされる.

このような中,本研究では富士北麓の水資源としての 地下水・湧水の量的および質的安全性を確保するため, 水文科学的な現状を把握することとした.この第一歩と して水収支の導入部にあたる降雨量を高精度かつ定量的 に把握するため,昨年度は富士北麓地域を対象とした単 一のXバンドMPレーダによる雨量推定を試み,その有 用性を示すことができた.今年度は富士山の水資源を包 括的に捉えるために,複数のXバンドMPレーダを用い て富士山全体の雨量推定を行った.また,蒸発散量の 推定には,従来の水収支法等とあわせて,サップフロー センサーシステムを用いた試行もおこなう.これらの研 究結果より,地下水の量的把握,水収支の検討を行う予 定である.

さらに加えて,富士北麓の地下水・湧水の水質や由来 に関する検討をおこなうために,代表的な湧水群である 忍野八海、夏狩・十日市場湧水郡および富士五湖の代表 的な湖である河口湖において,主要イオン分析,微量元 素分析,水の安定同位体比解析を実施する予定である.

もちろん本研究の最終目標は、以上のような種々の水 文科学的調査・研究成果に基づいて、高精度の水理地質 構造および水循環モデルを構築し、地下水流動系の解明 をおこなう。このうえで当該地域の水収支結果ならびに 水質にもとづいた検証結果から、富士北麓水資源の保全 と活用のための水文科学的モデルと地下水資源賦存量等 の基礎資料を提供することにある。

本論では今年度研究成果としての,降水量推定に関す る複数XバンドMPレーダを用いた雨量推定,ならびに 世界文化遺産富士山の構成資産の一つで,この地域の代 表的な湧水群である忍野八海の湧水量測定と富士五湖の 代表的な湖である河口湖の湖底湧水の解析結果について 報告する.

2. 複数のXバンドMPレーダを用いた 富士山周辺域での降雨量推定

2-1 解析対象地域・使用データ・解析方法の概要 2-1-1 解析対象地域

XバンドMPレーダによる解析対象地域を図2-1に 示した. 富士山の水資源を包括的に捉えるため,今年度 は解析対象地域を富士北麓だけでなく富士山周辺域とし た.本章で使用した地上雨量計の標高は富士北麓地域で は860~2,305m間の高標高に設置してある一方,富士 南麓では66~530m間とそれほど標高が高くない位置 にある。また解析対象地域について、Xバンドマルチパ ラメータレーダ(X-MPレーダ)は山梨大学のX-MPレー ダ(以下、梨大レーダと呼ぶ)及び国土交通省が静岡域 に3台設置しているX-MPレーダ(通称,X-RAIN)によっ て富士山全体をカバーして観測している.

2-1-2 使用データ

使用したデータは山梨大学及び国土交通省のXバンド MPレーダ,気象庁Cバンドレーダ,地上雨量計であり, 各々の観測概要は以下のとおりである.

1) XバンドMPレーダ

使用した梨大レーダと3台のX-RAINは波長が約 3cmの水平偏波と垂直偏波を送受信することで,降水 の観測を行っている。最大観測範囲は梨大レーダが約 64km, X-RAINは約80kmであり,5分毎12仰角のPlan Positional Indicator 観測 (PPI観測)を1ボリュームと したスキャンを行っている。

2) 気象庁Cバンドレーダ

気象庁Cバンドレーダは波長約5cmの水平方向に電界 をもつ電波を送受信する.水平解像度約120kmで、5分 毎の複数仰角PPI観測を1ボリュームとしたスキャンを 行っている.データは気象庁編集・気象業務支援センター 発行の水平解像度1kmメッシュ全国合成レーダから富士 山周辺域の5分毎のデータを抽出し、解析データとして 使用した.

3) 地上雨量計

本章において使用した地上雨量計データは解析対象地 域内のうち、山梨県側に設置してある12地点及び静岡 県側に設置してある3地点の計15地点である(観測位置 を図1に示した). 観測単位は気象庁のアメダス及び富 士山有料道路管理の雨量計が0.5mm単位,山梨県治水課 管理の雨量計が1mm単位となっている.

その他,降雨事例を抽出する際の補完資料として,気 象庁編集・気象業務支援センター発行のアジア太平洋地 上天気図を用いた.

2-1-3 解析方法

梨大レーダ及びX-RAINの観測データについては, 真木と朴 (2009)¹⁾による降雨強度推定式に基づき, Z_H(水平偏波のレーダ反射因子),KDP (偏波間位相差 変化率)を主としたパラメータを用いて降雨強度を算出 した.なお降雨強度 (R)については,KDP \leq 0.3deg/km もしくはZ_H \leq 30dBZの時にR-Z_Hを採用し,これ以外 ではR-KDPを用いることとした.この算出結果から得 られたデータを水平・鉛直解像度500m間隔の3次元グ リッドデータへと変換し,地上雨量計の実測値との比 較や推定降雨量分布を作成する際には,ある1つの水 平グリッド内において鉛直方向に高度3.25kmまでの降 雨強度を調べ,その最大値をそのグリッドでの降雨量

図2-1(上) X-MPレーダの位置と観測範囲
 (下) 解析対象地域と地上雨量観測地点の位置図
 ※●:山梨県,○:富士山有料道路,○:気象庁が各々観測

また昨年度は単一のX-MPレーダのみによる降雨量推 定を検討したが²⁾,今年度は複数のX-MPレーダを用い てグリッド毎の降雨強度を比較し、その最大値を採用す る手法を使った合成データを作成し、単一の推定結果と の精度の比較を行った.

X-MPレーダに対する比較対象としては気象庁Cバンドレーダのデータを使用した.1kmメッシュ全国合成

レーダのバイナリデータから,降雨強度に該当する部分 を抽出した.この抽出結果から得られた水平解像度1km のグリッドデータ(高度は約2km)を用いて,X-MPレー ダと同様に降雨量を推定した.

これら気象レーダからの推定結果に基づいて, 富士山 周辺域に設置されている各々の地上雨量計データの実測 値(地点データ)と地上雨量計が位置する緯度経度座標 が当てはまる気象レーダのグリッドデータ(面データ) とを比較し,気象レーダで推定された降雨量の精度につ いて検証した. 推定精度の検証には推定値が実測値から どの程度乖離しているかを表す次式のRMSE(二乗平均 平方根誤差)を用いた. RMSEの値が"0"に近い値ほど, 推定精度が良い. なお,解析対象とした事例は2013年 夏季において特徴的な降雨が見られた11事例である(表 2-1). なおJST はJapan Standard Time(日本標準時) の略称である.

$$RMSE = \sqrt{\frac{1}{N} \sum_{i=1}^{N} (\mathcal{Y}i - \hat{\mathcal{Y}}i)^{2}}$$

N:全推定対象数, yi:実測值, ŷi:推定值

表2-1 2013年夏季における解析対象事例 ^{東例No} 解析対象期間

手M1140.						
1	2013年7月17日00:00 ~	~ 2013年7月17日08:00 JST				
2	2013年7月23日12:00 ~	~ 2013年7月23日17:00 JST				
3	2013年7月29日06:00 ~	~ 2013年7月29日16:00 JST				
4	2013年8月05日16:00 ~	~ 2013年8月05日22:00 JST				
5	2013年8月06日23:00 ~	~ 2013年8月07日03:00 JST				
6	2013年8月07日13:00 ~	~ 2013年8月07日17:00 JST				
7	2013年8月11日15:00 ~	~ 2013年8月11日20:00 JST				
8	2013年8月25日03:00 ~	~ 2013年8月25日20:00 JST				
9	2013年8月26日20:00 ~	~ 2013年8月27日08:00 JST				
10	2013年9月04日08:00 ~	~ 2013年9月05日07:30 JST				
11	2013年9月24日22:00 ~	~ 2013年9月25日22:00 JST				

2-2 解析結果

2-2-1 気象レーダの推定に基づく積算降雨量分布

図2-2は 事 例No.2 (2013年7月23日12:00 ~ 17:00JST)における各気象レーダの推定に基づいた積 算降雨量分布図である.図2-1のX-MPレーダと富士 山との位置関係から,各レーダから富士山までの領域に ついては細かな部分まで降雨推定ができているものの, (a)の静岡北レーダでは富士山の北西~北東部分,(b) の富士宮レーダでは富士山の北西象限,(c)の香貫山レー ダでは富士山の北北西部分,(d)の梨大レーダでは富士 山の南~東の大部分において,各々レーダ観測の空白域 が存在していることが分かった.一方,これらのX-MP レーダデータを合成した(e)ではそれぞれの空白域を補 完し合い,富士山全体の対流性降雨を綿密に捉えている ことが判明した.(f)の気象庁レーダによる推定結果は 富士山全体の降雨は捉えているが,局所的な降雨までは 表現しきれていない結果となった.

また本章における解析対象事例のうち、X-MPレ-ダ合成による推定結果が比較的良い事例を図2-3に示 した.これらの事例に共通する事項として、降水継続時 間の長短に関わらず10分間あるいは1時間実測雨量値 が大きい対流性降雨によるものであることが挙げられ る.

一方で同じ解析対象事例のうち、X-MPレーダ合成 による推定結果が比較的良くない事例を図2-4に示し た.両事例とも大局的な降雨量分布を似ているものの, 気象庁レーダに比べてX-MPレーダ合成の推定結果が過 大に表現されていることが分かる.両事例ともに比較的 長い降水継続時間の間に0.5mm/10min ~ 1.0mm/10min の弱い雨が続いていることから,層状性降雨によるもの である.

2-2-2 降雨量の時間変化と推定精度

気象レーダによる推定値と地上雨量計による実測値の

時間変化について解析を行い,一例として富士山1合目 の観測地点における2事例を図2-5に示した.図2-5 上図は図2-2で示した事例No.2の対流性降雨事例であ るが,15:00~15:40JSTに地上雨量計で観測された短 時間強雨を両レーダともに推定できており,特にX-MP レーダ合成はほぼ実測値に近い推定値を示している.ま た13:30~14:10JSTにおけるゴーストピークについて もX-MPレーダ合成は気象庁レーダに比べて推定誤差を 低減できている.推定精度を示すRMSEは気象庁レー ダの5.87に対してX-MPレーダ合成は2.32であること から,推定精度はX-MPレーダ合成の方が良いことが分 かった.

図2-5下図に示した事例No.3の層状性降雨事例については、7:30~14:30JSTに地上雨量計では断続的に0.5mm/10minの弱い雨を観測しているに対して、気象 庁レーダでは若干過小評価ながらも雨量のトレンドを推定できている.しかしX-MPレーダ合成では雨量のトレ ンドは推定できているが、所々実測値の2~4倍の推定 値を示しており、全体的に過大評価傾向である.RMSE

図2-2 事例 No.2 2013年7月23日12:00 ~ 17:00JST における各気象レーダの推定に基づいた積算降雨量分布図 ※●:地上雨量計の観測地点

についても気象庁レーダの0.24に対してX-MPレーダ 合成は0.64であることから,推定精度は気象庁レーダ の方が良いことが分かった.

事例No.10 2013年9月04日08:00~9月05日07:30JST

図2-3 各事例におけるX-MPレーダ合成と気象庁
 レーダの推定に基づいた積算降雨量分布図①
 (a) X-MPレーダ合成, (b) 気象庁レーダ

事例No.3 2013年7月29日06:00~7月29日16:00JST

図2-4 各事例におけるX-MPレーダ合成と気象庁
 レーダの推定に基づいた積算降雨量分布図②
 (a) X-MPレーダ合成, (b) 気象庁レーダ

図2-5 富士山1合目におけるX-MPレーダ合成及び 気象庁レーダの推定値と地上雨量計実測値の時系列変化 (上図)事例No.2 2013年7月23日12:00~17:00JST (下図)事例No.3 2013年7月29日06:00~16:00JST

2-2-3 実測値と推定値に基づいた散布図・相関係数

X-MPレーダ合成及び気象庁レーダの推定値のばらつ き具合を調べるため、各地点について全11事例のデー タに基づいた散布図及び相関係数を求め、主な地点に おける結果を図6に示した.河口湖アメダスや富士山1 合目など比較的標高の低い地点ではX-MPレーダ合成の データのばらつきはあまり大きくなく,近似直線の傾き はほぼy=xの直線に近くなっている.気象庁レーダの データは多少ばらつきが見られ、近似直線の傾きはy= xよりも小さく,若干過小評価傾向である.富士山4合 目のデータは両レーダともにばらつきが大きく、近似直 線の傾きもy=xを下回っており、特にX-MPレーダ合 成の方が傾きは小さい. 富士山5合目のデータは両レー ダともに富士山4合目と比べるとばらつきは少ないもの の、さらに近似直線の傾きは小さくなり、特にX-MPレー ダ合成はy = xの傾きの半分程度になっており、10分間 雨量の実測値が大きいほど、レーダによる推定値が過小 評価傾向にある.また相関係数は富士山5合目以外では X-MP レーダ合成の方が気象庁レーダよりも高い結果と なっている.

2-2-4 降水グリッド抽出方法の改良について

従来のX-MPレーダを用いた降水グリッドの抽出方法 を図2-7の上図に示す. 2-1-3章で述べた通り、鉛直 方向に高度3.25kmまでの降水グリッドを抽出したあと、 グリッドの中の最大値をその地点 (グリッド) での推定 降水量としている. この場合、上空の強い降水強度を捉 えてしまうことや地上付近の地形性ノイズを拾ってしま うことで、レーダによる推定値が地上雨量計の実測値と 乖離してしまう可能性がある. そこで地上雨量計に近い 所の上空の降水グリッドを捉えることで実測値に近い推 定値を求めることができると考え、図2-7下図に示し た方法を用いて抽出を試みた.最初に国土地理院発行の 250mメッシュ地形図からX-MPレーダの解像度500m に合わせた標高データを作成し、標高データが存在する グリッドを地表面と設定した. そして各水平グリッド において地表面より鉛直方向に上2層の降水グリッドを 抽出し、そのうち大きい値の方をその地点 (グリッド) での推定降水量とした.また地表面より上2層に降水グ リッドがない場合、さらに鉛直方向に降水グリッドを探 査して最初に到達した降水グリッドをその地点 (グリッ ド)での推定降水量とした.

図2-5と同地点同事例における降水グリッド抽出方 法の改善前と改善後の推定値の時間変化及びRMSEを 図8に示した.図2-8上図の事例No.2(対流性降雨)に おいて、13:30~14:10JSTに見られたゴーストピーク は改良後の推定値の方が誤差を低減できている.また 推定精度を示すRMSEは改良前のX-MPレーダ合成が 2.32であるのに対して、改良後のX-MPレーダ合成が

図2-6 主な地点における雨量の実測値と推定値の散
 布図及び相関係数(r)
 (a) X-MPレーダ合成,(b) 気象庁レーダ

1.09であることから,改良後の推定値の方がより精度が 高いことが分かった.

図2-8下図の事例No.2 (層状性降雨)では、対象時間 内において所々で見られた過大な推定値は改良後も残っ ているが、改良前の値と比べると低減している. RMSE も改良前の0.64に対して、改良後は0.53と若干精度が 良くなっていることが分かった.

また解析対象11事例について,地点毎のRMSEを降 水グリッド抽出方法の改良前と改良後で比較したとこ ろ,改良後のRMSEの値が小さくなり推定精度が良く なった地点は15地点中10地点であったことから,本章 で検討した新たな降水グリッドの抽出方法は一定の改善 効果があると分かった.

2-3 考察

2-3-1 降雨の種類と推定精度との関係

2-2-1で述べたX-MPレーダ合成による推定値の積算 降雨量分布や2-2-2章で述べた推定値の時間変化見られ たとおり、対流性降雨の事例については推定値と実測値 との誤差は少なく、推定精度が良いことが分かった.一 方で層状性降雨の事例については全般的に推定値が過大 評価傾向にあり、推定精度が良くないものもあることが 分かった.

対流性降雨の場合,レーダ観測によって捉えられた降 雨強度が強いことから,雨量推定に精度の高いR-KDP が採用されるためであるほか,地上雨量計で観測され る雨も10分間雨量が数mm程度の強い雨であることか

ら,推定値と実測値との間に応答時間の差があまりない ことなどが結果的に高い推定精度をもたらしていると考 えられる.層状性降雨の場合,レーダ観測によって捉 えられた降雨強度が弱いことから,雨量推定にはR-KDP よりもR-ZHが採用されるために推定精度が若干落ちる ほか,地上雨量計で観測される雨が10分間雨量または1 時間雨量で0.5~1.0mm程度の弱い雨であることために 地上に到達した雨がすぐに記録されず,転倒ます型の雨 量計内で雨がまとまった時に記録されることで推定値と 実測値との間にタイムラグが生じるため結果的に推定精 度の低下をもたらしていると考えられる.

2-3-2 改善後の降水グリッド抽出方法

2-2-4章で降水グリッドの抽出方法の改良を目的とし て解析を行った結果,事例No.2の対流性降雨事例につ いては推定精度が大きく改善したことが分かった.より 地上雨量計に近い所の高度の雨を捉えることで,実測値 に近い降雨強度のデータを得られたためであると考えら れる.一方事例No.3についても同様の処理を行ったが, RMSEの値はわずかに下がった程度で明瞭な改善は見 られなかった.このことは層状性降雨事例においては, 地上雨量計に近い高さの降雨強度のデータを得る影響よ りも,降雨強度が弱い場合に採用されるR-ZHの推定式 による影響の方が大きいためであることが推察される.

3. 忍野八海の湧出量及びの湖底調査

3-1 忍野八海の湧出量調査

3-1-1調査場所及び方法

忍野八海の湧出量を把握するため,図3-1のとおり 忍野八海湧池(山梨県南都留郡忍野村)とその周辺河川 で流量調査を行った.

(国土地理院地図:下側が南)

	0		
		改善後の推	進定値と地上雨量計実測値の時系列変化
(上図])	事例 No.2	2013年7月23日12:00~17:00JST
(下図])	事例No.3	2013年7月29日06:00~16:00JST

で計り、プロペラ式流量計を用いて流速を計り流量を 算出した.また周辺河川の流量はYSI社製リバーサー ベイヤーM9を用いて2015年2月3日に調査した(写真 3-1参照).リバーサーベイヤーM9は水深、流速及び 位置(D-GPS)のデータを同時に計測できるため川を横 断することにより流量を算出できる.リバーサーベイ ヤーM9はトランスデューサー3.0MHzを3.0MHz及び

写真3-1 リバーサーベイヤーM9での調査風景

1.0MHzを4基づつ備え周波数は自動切替であり,計測 範囲は水深0.06m~30m,流速は±20m/秒で精度は ±0.25%または±0.2cm/秒である.

3-1-2 調査結果

表3-1のとおり, 湧池(①)では0.083m3/s, ②では 0.396m3/s, ③では0.692m3/sと湧池から下流にいくに したがい流量は増加した.

表3-1 忍野八海における流量

調査位置	流量	備考(使用した機器)
1	0.083m³/s	プロペラ式流速計
2	0.396 m³/s	リバーサーベイヤーM9
3	0.692 m³/s	リバーサーベイヤーM9

3-2 河口湖の湖底地形調査

3-2-1 調査場所及び方法

河口湖の湖底地形を把握するため、図3-2のとおり 河口湖うの島周辺で湖底地形調査を行った.

3-2-2 調査結果

河口湖の湖底地形を把握するため、図3-3に河口湖 うの島周辺で湖底地形調査を行った航跡を示す.なお、 うの島南側は、写真3-2のとおり溶岩が湖面から露出 しており水深が浅く船が近づくことができないため計測 していない.

調査区域での最深部はうの島東側で水深は14m程度で あった.また、図3-4のとおり、うの島南側において は凹凸が激しく、溶岩が湖面から露出していることから 広い範囲で溶岩が存在していると考えられた(図5参照).

図3-2 河口湖における湖底地形調査位置(国土地理院地図:下側が南)

図3-3 河口湖うの島周辺で湖底地形調査を行った航跡と水深

写真3-2 うの島南側の溶岩

図3-4 リバーサーベイヤーの航跡と水深(図の下方向が南)

図3-5 河口湖うの島周辺において溶岩の存在が示唆 される領域

4. 河口湖の湖底湧水

富士五湖では古くより湖底湧水の存在が示唆されてきた⁴⁾.一般に流入河川に乏しいこれら湖では,湖底湧水は水源として水質の維持に重要な役割を果たしていると同時に,フジマリモ等希少な生物の生育地となっている⁵⁾.しかしこうした湧水の1箇所あたりの湧出量は総じて微量であり,また水源涵養のメカニズムも捉えにくいことから十分な保全対策が行われていないのが現状である.

河口湖では従来冬季の結氷状況などから湧水箇所の推 定がなされている^{6),7)}.しかし結氷の有無は湧水以外の 要因によっても左右されるため、その実態については未 だ不明な点が多い.近年、河口湖の表層水のバナジウム (⁵¹V)濃度が、夏の水位上昇期に増加するとの報告があ り⁸⁾、バナジウムをトレーサーとすることで湖への流入 水塊の実態を捉えられる可能性が出てきた.こうした背 景から昨年度の研究では、湖底直上水中のバナジウム濃 度の湖内分布を調べた⁹⁾.その結果、河口湖西湖盆の東 側の湖底でバナジウム濃度の高い水域が分布することが 明らかとなった (図4-1).特に鵜の島西方では、直接 の流入河川がないにもかかわらず,バナジウム濃度の高 い水塊が南岸に沿って確認され,溶岩台地からの局所的 な地下水流入のあることが示唆された⁹.

一方その後の調査により、これまで表層水中で報告さ れてきた冬季の水中バナジウム濃度の低下⁸⁾が、底層で も起こっていることが明らかとなった(山本未公表デー タ).一般に河口湖の湖水中のバナジウム濃度は、周辺 地下水に比べ濃度が低く、これは主に地表を流れてきた バナジウム濃度の低い雨水や雪解け水が湖に流入してい るためと解釈されてきた¹⁰⁾.しかしこうしたモデルで は、水位が低下し流入水が減少するはずの冬季にバナジ ウム濃度が湖全体で低下することを調和的に説明できな い.

こうした背景から本年度の研究では、河口湖における バナジウム濃度の鉛直分布の季節変動を調べ、水質デー タと比較することでその変動メカニズムを検討した.ま た、河口湖における湧水の実態を把握するために、鵜の 島西部において超音波流速計による湖内流動観測並びに 携帯型CTD計による湖内の水温・電気伝導率の測定を 行った.

図4-1 河口湖湖底直上水中のバナジウム濃度の分布 及び本研究の観測点(内山ほか⁵⁻⁶⁾に加筆)

4-1 実験方法

4-1-1微量元素分析

本研究では、昨年度の調査で比較的高濃度のバナジ ウムが確認された鵜の島西部の観測点(図4-1)にお いて、2014年8月28日、9月29日、10月23日にバン ドーン式採水器(離合社/アクリル製)を用い表層から 湖底まで1m毎に湖水試料を採取した.採取した試料は、 孔径0.20µmのメンブランフィルターで濾過したものを 10mL分取し、硝酸0.1mLを加えたものを分析用試料と した.測定には、山梨県富士山科学研究所の誘導結合プ ラズマ質量分析計(HP-4500:横河アナリティカルシス テムズ社)を用い、絶対検量線法による定量を行った. ブランク試料中のバナジウム含有量は測定限界以下であ り、バナジウムの測定精度は±1%であった.

4-1-2 湖内流動観測

湖内流動観測は、2015年1月29日に鵜の島の西側の 水域(計24地点)で行った.測定には、県衛生環境研究 所の1.5MHz超音波ドップラー流速計(Sontek社)を使 用し、表層から湖底まで層厚50cmに設定されたセル内 の平均流速・流向を120秒間測定した.

4-1-3 水質(水温・電気電導率)観測

水質観測には、ワイエスアイ・ナノテック社の携帯型 CTD計を使用した.水温と電気電導率の測定精度はそ れぞれ±0.05℃,±0.25%±5 μ S/cmである.得られた 観測データは、General Mapping Tool (GMT)のスプラ イン補間を行うsurface コマンド¹¹⁾を用いて格子化し、 等値線図を作成した.なお、surfaceコマンドでは補間

図4-2 河口湖における8月から10月の水温及び溶存酸素濃度、pH、EC、バナジウム(⁵¹V)濃度の鉛直分布の変化

データによって形成される局面の曲率をテンションとし て調整でき本研究では0.25 (水温), 0.75 (電導率)を用 い計算した.

4-2 結果および考察

4-2-1 湖水中バナジウムの鉛直分布の季節変動

図4-2に各採水日における水質データ(水温・pH・ 電気伝導度・溶存酸素濃度) 並びにバナジウム濃度の鉛 直分布を示した.水温の鉛直分布は、8月の水深8m以 深で減少傾向にあり、水温躍層の発達を示していた。-方,9月になると水温躍層は縮小し始め,10月には完全 に消滅し循環期に入ったことが示唆された(図4-2). これに対し溶存酸素濃度(DO)は、躍層の発達する8月 と9月の水深8m以深で低下する傾向がみられた(図4-2). 一方, 電気電導率 (EC) は DO 分布とは 逆に 貧酸素 状態が強い水深8m以深で増加する傾向にあった(図4-2). ただし9月には、湖底付近でECの減少が見られた. バナジウム濃度は、DO分布とよく似た鉛直分布を示し、 水温躍層の発達する8月と9月の水深8m以深で減少す る傾向が見られた(図4-2). なおECの低下が見られ た9月の湖底付近のサンプルでは、DO並びにバナジウ ム濃度の増加が見られ、湖底湧水の存在が示唆された.

従来河口湖では、表層水中のバナジウム濃度が周囲の

地下水に比べて低く,主に地表を流れてきた雨水や雪解 け水が湖に流入するためと解釈されてきた¹⁰⁾.しかし, 本研究の結果を見ると,降水によって水位が上昇する夏 季の底層でバナジウム濃度が低下しているものの,降水 の影響を強く受けると考えられる表層水では逆に濃度が 高くなっていた.降水中に含まれるバナジウムは一般に 0.1µg/L以下であり,このことは降水の流入が湖水表層 中のバナジウム濃度を低下させているわけではないこと を示している.

図4-4 平成27年1月29日に河口湖で観察された湖 底より湧き上がる気泡(矢印)

図4-3 河口湖における水質(水温・電気電導率)・流動状況の観測結果

一般に水環境中のバナジウムは、水-粒子間の相互作 用や、陸起源・生物起源物質、水酸化鉄粒子、マンガン 酸化物、酸化状態の変化に伴う吸着脱着メカニズム等に よるスキャベンジング(除去)により非保存的挙動を示 すことが知られている¹²⁾.河口湖では、水温躍層が発 達しDOが低下する8月と9月の水深8m以深でバナジウ ム濃度が減少しており、こうした環境下でバナジウムの スキャベンジング(除去)が起こっている可能性がある. なおスキャベンジングとは複雑に絡み合った粒子と溶存 化学種との反応によって水中から微量元素が除去される 場合の便宜的な総称であり、Goldbergによって1954年 に提唱された¹³⁾.

その後10月に入ると、底層のバナジウム濃度は増加 する一方で表層水中のバナジウムは減少しており、水温 躍層の消滅によりバナジウム濃度の低い底層水とバナジ ウム濃度の高い表層水の鉛直混合が起こっていることが 推察される.吉澤らの先行研究⁸⁾によれば、河口湖で表 層水中のバナジウム濃度が増加するのは6月から8月に かけてであり、この時期にバナジウムが湖水に再付加さ れている可能性が高い.

一般に、降水や大気降下物中に含まれるバナジウムの 起源は人為起源であり、バナジウム/ニッケル比が0.16 から1.88の値を示すことが知られている¹⁴. これに対 して湖水中のバナジウム/ニッケル比は6.4±3.3であ り、湖水中のバナジウムが自然起源であることを示唆し ている. 今後水位上昇期にバナジウム濃度の増加する深 度を調べることで、湖水へのバナジウム付加のメカニズ ムが解明できると期待される.

4-2-2 河口湖の水質・湖内流動観測

図4-3には、CTD計と超音波流速計による水質及 び湖内流動状況の観測結果を示した.測定された流速 は、ほとんどの場所で2cm/s以下と低かったが、ライン 1とライン2の北側の水深0から2m付近では、湖岸から 湖内へと向かう比較的速い流速が観測された(図4-3). また水温観測結果からは、ライン1とライン2で北ほど 高い値を示す傾向が見られる一方、ライン3では南北両 岸の水深2から4mの場所で水温の高い水塊が分布して いる様子が確認された(図4-3の丸印).電気電導率は いずれも南岸沿いで低く、北岸ほど高い傾向を示した. 残念ながら観測日が少なかったことから、水の流れを連 続的に追跡することはできなかったが、水質の違いから それぞれ御坂山地及び富士山の溶岩台地を起源とする水 の流入が示唆された.

また1月の観測時に,通称黒岩ワンドと呼ばれる場所 で,湖底より湧き上がる気泡が観察された(図4-4).河 口湖ではしばしば堆積物中の有機物の分解により発生し たメタンが気泡として湧き上がることが知られている¹⁵⁾. こうした場所は主に湖底にヘドロが厚く堆積した湖底平 原となっているが、今回気泡が観察された場所は水深 10m程度の溶岩斜面上にあり、従来メタンガスが報告さ れてきた場所¹⁵⁾とは異なっていた、気泡の正体は不明だ が、今回気泡が観察された黒岩ワンド周辺はフジマリモ の生育地としても知られており⁵⁾、湧水との関連性が示 唆される.

かつて河口湖は雨水の溜まった湖だと考えられていた 時期もあった.しかし、本年度の調査結果はそのような 単純な集水過程を支持していない.近年地元では河口湖 の湧水の減少を危惧する声もあり、今後湧水箇所の特定 や湧水量の把握などを行なった上で水源維持に必要な保 全策を講じていく必要があると考えられる.

5. 結言および今後の課題

ここでは、今年度のまとめと今後の課題について、解 析項目ごとに述べる.

5-1 XバンドMPレーダを用いた降水量推定

複数のXバンドMPレーダに基づいた合成データを用 いた結果,富士山全体の降雨をカバーしつつ,狭い領域 の降雨の多寡も緻密に捉えられることが分かった.また 降水グリッド抽出方法の改善について検討を行ったとこ ろ,特に対流性降雨事例において推定精度を向上させる ことができた.一方層状性降雨については降雨強度の 推定式による影響の方が大きいため,抽出方法の変更に よって若干改善する程度の結果となった.

2013年夏季に富士山周辺域に降雨をもたらした事例 は全40事例にわたるため、これら全事例についても解析 を進め、独立峰の富士山に見られる夏季の特徴的な降雨 を捉えていく予定である³⁾.また層状性降雨事例につい ては推定精度を向上させる必要があることから、推定式 を含めた改善方法を検討していくことは不可欠である.

5-2 河口湖の湖底湧水

今年度の研究により、従来雨水等の流入により濃度が 低いと考えられていた河口湖の湖水中のバナジウムが、 夏季底層で表層に比べ低い濃度を示すことが明らかとな り、湖に流入したバナジウムがスキャベンジング(除去) されている可能性のあることがわかった.またCTD計 による水質観測の結果、河口湖西湖盆の南北両岸の崖斜 面上において、湧水によると思われる水温の変化を確認 することができた.今後、春から夏の水位上昇期にかけ て水質測定を継続して行なうことで湧水箇所の特定やそ のメカニズムの解明が進むことが期待される.一方水源 保全の必要性から、湖底湧水の水同位体比を測定しその 涵養標高を明らかにすることも重要な課題である.また 将来的には水中カメラにより湧水地周辺の水生生物の生 育状況を確認するなど、湧水地の自然環境の保全に向け た基礎データの収集を行っていく必要がある.

なお,本論1章は内山,2章は小田切・佐野,3章は村 中・神谷・内山,4章は山本,5章は小田切・山本・内 山がそれぞれ分担執筆した.

謝 辞

梨大レーダは山梨大学グローバルCOEプログラム「ア ジア域での流域総合水管理研究の展開」の支援を受けて 運用されました.さらに国土交通省XRAINデータは国 土交通省XバンドMPレーダに関する技術開発コンソー シアムを通じて提供を受けました.梨大レーダの立ち上 げと運用において、神戸大学都市安全研究センター大石 哲教授にご協力・ご指導をいただきました.また山梨県 県土整備部治水課と山梨県道路公社には地上雨量計デー タをご提供いただいた.ここに関係各位に厚く御礼申し 上げます.

富士山科学研究所火山防災研究部研究助手笠井明穂氏 と蓮尾麻由子氏には河口湖・忍野八海の調査等本論をま とめるに当たって、お手伝いいただいた.記して御礼申 し上げます.

参考文献

- 小田切幸次,佐野哲也,大石哲,内山高,小林浩: XバンドMPレーダを用いた富士北麓地域での降水 量推定に関する検討,水文・水資源学会2013年度研 究発表会要旨集,114-115. (2013)
- 2) 真木雅之, 朴相郡: 高仰角観測時の X バンド偏波レー ダ降雨強度推定式. 防災科学技術研究所研究報告, 73, 41-47. (2009)
- 3)小田切幸次,佐野哲也,大石哲,内山高,小林浩: 2013年夏季における富士山周辺域での降雨分布とその要因について,日本気象学会2015年度春季大会(投稿中)
- 4) 石原初太郎:富士山の地理と地質,古今書院,408p. (1928)
- 5) 山梨県教育委員会:マリモ学術調査報告書,75p. (1981)
- 6) 山本寿々雄:富士山国立講演博物館研究報告,9,13-14. (1963)
- 7)有泉和紀,吉澤一家:山梨県衛生公害研究所年報, 45,45-48. (2001)
- 8) 吉澤一家,有泉和紀,望月映希:山梨県衛生公害研 究所年報,52,85-88. (2008)
- 9)内山高ほか:山梨県総合理工学研究機構研究報告書,9,67-85.(2014)
- Koshimizu, S. and Tomura, K.: Groundwater Updates, 171-176. (2000)

- Wessel, P. and Smith, W.H.F.: EOS Trans. AGU, 72, 441, 445-446. (1991)
- Wang, D. and Sanudo Wilhelmy, S.A.: Mar. Chem., 117, 52-58. (2009)
- 13) Goldberg, E.D: J. Geol., 62, 249. (1954)
- 14) 浮遊粒子状物質対策検討会:浮遊粒子状物質汚染予 測マニュアル,400p. (1997)
- 15) 濱野一彦:富士山-その自然のすべて-. 同文書院, 170-186. (1992)

成果発表状況

学会発表

- 小田切幸次,佐野哲也,大石哲,内山高,小林浩: 複数のXバンドMPレーダを用いた富士山周辺域での降雨量推定,水文・水資源学会2014年度研究発表 会,宮崎,2014
- 2)山本真也,長谷川達也,吉澤一家,中村高志,内山高:河口湖の湖底直上水の安定同位体比とバナジウム濃度の空間分布、日本地球惑星科学連合2014年大会,横浜,2014

河口湖の水位変動と河口湖南東部の地下水位変動

尾形 正岐¹・小林 浩² (¹山梨県富士工業技術センター,²山梨県衛生環境研究所)

Chronological change of water level of Lake Kawaguchi and that of ground water level around south east area of Lake Kawaguchi

¹Masaki OGATA and ²Hiroshi KOBAYASHI

(¹Yamanashi Pref. Fuji Industrial technology Center, ²Yamanashi Institute for Public Health)

要約:河口湖の水位の経時変化と河口湖南東部の地下水位の経時変化を比較したところ、地下水位の水位変動が河口湖の水位変動と似た挙動を示している地点があり、河口湖南東部の地下水位は河口湖からの地下流出の影響を受けていると考えられる。

Abstract : Chronological change of water level of Lake Kawaguchi and that of groundwater level around south east area of Lake Kawaguchi was investigated. At some point, the chronological change of groundwater level was similar to that of water level of Lake Kawaguchi. It was suggested that Lake water flows in ground water around south east area of Lake Kawaguchi.

1. 緒 言

富士山北麓に位置する富士五湖のひとつである河口湖 は富士山の火山活動により形成され、降雨や富士山へ の積雪により水位の変動を繰り返している.近年では 2011年9月と2012年5月と7月,2013年11月に大幅な 水位の上昇が観測され,2013年4月から9月にかけて大 幅な水位の低下が観測された.

富士五湖の湖水の水位変動と富士山麓の地下水の水位 変動や地下水の流動に関する代表的な研究例としては宮 本¹⁾や濱野²⁾,菅野ら³⁾などがある.宮本¹⁾や濱野²⁾は富 士山北麓地域の地下水面図を描き,富士山の地下水が河 口湖南東部から桂川方向へ流動していることを示してい る.菅野ら³⁾は河口湖の水位上昇は河口湖から南に流下 する地下水と富士山側から流下する地下水が合流し,桂 川方向に排出しきれなくなったときに起こることを示し ている.

本稿では富士五湖のひとつである河口湖の水位の経時 変化と河口湖南東部に位置する富士吉田市にある井戸の 地下水位の経時変化を比較した.

2. 河口湖周辺地域の地理と解析方法

2-1 河口湖周辺地域の地理

表1に井戸の位置とそのID一覧を、図1に井戸の位置 を示す.図1は国土交通省河川局⁴⁰の水系図、尾形ら⁵⁰ をもとに作成した.W1からW4は地下水位のモニタリ ング井、W5は4節で述べる、地質柱状図を示す井戸で ある. 河口湖は富士五湖(山中湖,河口湖,西湖,精進湖, 本栖湖)のひとつであり,湖面標高は約830mであり, 富士五湖のうちで最も低い.河口湖は西方,北方,東方 を御坂山地に囲まれている.河口湖の南方は富士山麓と なり,溶岩流で構成されている.

2-2 河口湖の水位,降水量と河口湖南東部の地下水位 解析方法

河口湖の水位については山梨県⁶⁾を引用し,2009年4 月から2014年3月まで,データを整理した.降水量に ついては気象庁⁷⁾を引用し,2009年4月から2014年3 月まで,河口湖の日降水量のデータを整理した.河口湖 の水位の観測点と降水量の観測点は図1に示す.

富士山北麓の河口湖周辺地域の地下水位の変動につい ては富士吉田市の協力を得て,富士吉田市が管轄する地 下水モニタリング井(表1および図1のW1からW4)の 水位変動をとらえた.

地下水モニタリング井は河口湖南東側に4ヶ所あり, 毎日地下水位のデータが蓄積されている. それぞれの井 戸について2009年4月から2014年3月まで,日平均水 位のデータを整理し,経時変化をとらえた.

3. 結果

3-1 河口湖の水位の経時変化と降水量の経時変化

河口湖の水位と日降水量を図2に示した.図2中の実 線は河口湖の水位低下のピークを,点線は河口湖の水位 上昇のピークを示している.水位の低下が目立つのは 2009年9月28日(-3.25m),2010年2月25日(-2.91m),

١D	地 点 名 称	地表面標高 m	掘削深度 m	ストレーナー深度 m
W1	下吉田東小学校	735	60. 5	42. $0 \sim$ 47. 5 47. 5 \sim 53. 0
W2	桂川河川公園	795	101.0	$24. 0 \sim 29.5$ $29. 5 \sim 35.0$ $57. 0 \sim 62.5$
W3	吉田西小学校	825	66. 0	16. $5 \sim 22.0$ 22. $0 \sim 27.5$ 60. $5 \sim 66.0$
W4	パインズパーク	900	121.0	49.5∼ 55.0 82.5∼ 88.0 104.5∼ 110.0
W5	松場水源	840	120. 0	54~ 59 71~ 81 104~ 114

表1 河口湖南東部の井戸の一覧

図1 河口湖南東部の井戸の位置(国土交通省河川局4)の水系図,尾形ら5)をもとに作成)

2010年8月25日 (-2.23m), 2011年5月27日 (-2.51m), 2011年8月20日 (-2.61m), 2013年9月3日 (-3.69m), 2014年3月2日 (-2.11m) である.マイナス (-) は標高 833.53mの河口湖の水位計測基準点0mを基準にして水 位計測基準点よりも湖水面が下にあることを示す.

水位の上昇が目立つのは2009年5月18日 (-2.35m), 2009年12月12日 (-2.44m), 2010年5月27日 (-1.93m), 2010年11月23日 (-1.63m), 2011年6月19日 (-2.09m), 2011年9月6日 (-0.39m), 2011年9月23日 (-0.65m), 2011年11月20日 (-1.15m), 2012年5月8日 (-1.02m), 2012年7月10日 (-1.17m), 2013年11月16日 (-1.14m) である.

河口湖の水位は台風による大雨や連日降雨のあった直後に上昇している.たとえば2011年9月21日は台風の 通過に伴う降雨があり,9月21日から22日に河口湖の 水位は-1.15mから-0.72mに上昇している.

3-2 河口湖南東部の地下水位の経時変化

河口湖南東側に位置する4ヶ所の井戸の地下水位の経 時変化を図2に示した.2009年から2013年までの期間 では,W1(下吉田東小学校グラウンド内にある井戸)の 地下水位の変動とW3(吉田西小学校グラウンド内にあ る井戸)の地下水位の水位変動はW2(桂川河川公園内に ある井戸)の水位変動やW4(パインズパーク内にある 井戸)の地下水位の水位変動と比べて季節変動が大きく なっている.W1とW3の地下水位変動は河口湖の水位 変動と似た挙動を示している.

4. 考察

現在,河口湖,西湖,本栖湖には発電や水位調節を目 的とした放水路が設けられており,水位は人工的に調節 されているが,各湖の水位には季節変動が見られる.1 年間の河口湖の水位の変動を概観すると,3月から6月 の低水位期,7月から10月の上昇期,11月から2月の降 下期に分けられる⁸.

3-1節では河口湖の水位は台風による大雨や連日降 雨のあった直後に上昇していることを述べた。河口湖の 湖水は周囲の山地への降水が主たる起源になっていると 考えられる。

3-2節ではW1の地下水位の変動とW3の地下水位の 変動はW2の地下水位の変動やW4の地下水位の変動と 比べて季節変動が大きく,河口湖の水位変動と似た挙動 を示していることを述べた.河口湖南東部では河口湖か ら周辺地下水への定常的な地下流出があるとされる⁸⁰. W1は河口湖の東端から東へおよそ3.8km,W3は河口湖 の東端から南東へおよそ2.8kmの地点に位置している. 比較的季節変動の大きかったW1とW3に関しては地下 水位の経時変化が河口湖の水位の経時変化の挙動に似て

図2 河口湖の水位,降水量と河口湖南東部W1からW4 の地下水位の経時変化(河口湖の水位は山梨県⁶⁾ をもとに作成,日降水量は気象庁⁷⁾をもとに作成). 実線は河口湖の水位低下のピーク.点線は河口湖 の水位上昇のピーク.

おり,河口湖からの地下流出の影響を受けていると考え られる.図3には河口湖南東部W5地点の地質柱状図を 示した(尾形ら⁵⁾).河口湖からの地下流出は図3に示す 砂礫や火山砂礫の層,火山砂の層などといった比較的透 水性のよい層を伝っていると考えられる.

5. 結 言

河口湖の水位の経時変化と河口湖南東部の地下水位の 経時変化を比較したところ,地下水位の水位変動が河口 湖の水位変動と似た挙動を示している地点があり,河口 湖南東部の地下水位は河口湖からの地下流出の影響を受 けていると考えられる.

謝 辞

本研究をすすめるにあたり,富士吉田市産業観光部環 境政策課の担当の方々には地下水位のデータ提供にご協 力頂きました.ここに感謝の意を表します.

参考文献

- 宮本昇:富士火山山麓の水理地質学的研究-火山地 域地下水の代表例として-,東京教育大学理学博士 学位論文. (1968)
- 2) 濱野一彦:富士山北麓の地下水、山梨大学教育学部 研究報告,27, P.59-66. (1976)
- 3) 菅野敏夫・石井武政・黒田和男:水文地質構造から 見た富士山北麓地域の地下水流動と河口湖の水位変 動機構に関する一考察.日本地下水学会誌,28(1), P.25-32.(1986)
- 国土交通省河川局:地下水水質年表,社団法人地下 水技術協会,221p. (2002)
- 5) 尾形正岐・小林浩・輿水達司:富士山北麓地域の地下水のフッ素濃度と地下水面について.日本地下水学会誌,56(1), P.35-51. (2014)
- 6) 山梨県:富士五湖の過去の水位, http://www.pref. yamanashi.jp/chisui/113_006.html. (2014.05.16閲 覧)
- 気象庁:気象観測データ,http://www.data.jma. go.jp/obd/stats/etrn/. (2014.07.23閲覧)
- * 林武司・坪井哲也:富士山北麓における山体地下水と山麓湖の交流,地下水技術,47 (11), P.3-14.
 (2005)

成果発表状況

学会発表

 尾形正岐、小林浩:河口湖の水位変動と河口湖南東 部の地下水位変動、日本地下水学会2014年秋季講演 会、熊本、2014

図3 河口湖南東部W5の地質柱状図(尾形ら⁵⁾)