クニマスの生態解明及び増養殖に関する研究

Studies on the Ecology and Aquaculture of Kunimasu (Oncorhynchus kawamurae) in the Population of Lake Saiko

クニマスの生態解明及び増養殖に関する研究(第3報)

青柳敏裕¹,岡崎 巧²,大浜秀規¹,三浦正之²,谷沢広将¹,小澤諒¹,長谷川裕弥³,吉澤一家³,坪井潤一⁴, 勘坂弘治⁵,市田健介⁵,Lee Seungki ⁵,吉崎悟朗⁵,松石 隆⁶

(¹山梨県水産技術センター,²山梨県水産技術センター忍野支所,³山梨県衛生環境研究所,⁴(独)水産総合研究センター, ⁵東京海洋大学,⁶北海道大学)

Studies on the ecology and aquaculture of Kunimasu (*Oncorhynchus kawamurae*) in Lake Saiko.

Toshihiro Aoyagi¹,Takumi Okazaki²,Hideki Ohama¹,Masayuki Miura²,Kosho Tanizawa¹,Ryo Ozawa¹,Yuya Hasegawa³, Kazuya Yoshizawa³,Junichi Tsuboi⁴,Koji Kanzaka⁵,Kensuke Ichida⁵,Lee Seungki⁵,Goro Yoshi-zaki⁵,Takashi Matsuishi⁶ (¹Yamanashi Fisheries Technology Center, ²Yamanashi Fisheries Technology Center Oshino-branch, ³Yamanashi Institute for Public Health, ⁴ Fisheries Research Agency, ⁵Tokyo University of Marine Science and Technology, ⁶Hokkaido University)

要約:2010年に西湖で再発見されたクニマスの保全及び活用を図るため,資源生態調査及び養殖試験を行った.10月1 日を基準とした西湖のクニマス資源量は,2012年が5,397-6,079-7,501尾,2013年が4,979-5,459-6,384尾(それぞれ寿 命6才-5才-4才の場合)と推定された.釣獲されたクニマスの年齢組成は,2012年の1,2才から2013,2014年は3,4才 にシフトし,年級群の豊凶に伴う変動のあることが示唆された.クニマス及びヒメマスの成魚は表層から中層,ヒメマス の稚魚は底層と,体サイズにより生息水深が異なり,成魚及び幼魚ではカブトミジンコ,ヒメマス稚魚はケンミジンコ類 を主要な餌生物としていた.また,動物プランクトンの少ない時期はユスリカ蛹などベントス,ヒメマスでは落下した陸 生昆虫も利用していた.西湖のクニマスの産卵環境は50m²程度の砂礫地に依存し,産卵場湖底湧水の保全のため、地下 水の層構造を解明する必要があると考えられた.

養殖試験の結果,1才時にはクニマス,ヒメマス両種は同等の成長を示したが,2才以降ヒメマスに比ベクニマスの成 長が滞り,生残率も低かった.ヒメマスは満3才となる2014年10-11月に90%の個体が成熟に伴いへい死したのに対し, クニマスは2014年9月から2015年3月までの長期にわたり5%の個体が成熟したのみであり,クニマスはヒメマスに比 べ産卵期が長く,また成熟年齢も異なることが明らかとなった.クニマスとヒメマスを人為的に交配したところ,正逆い ずれの組み合わせにおいてもふ化仔魚が得られ,両種の雑種は生存性を有することが明らかとなった.クニマス代理親魚 を作出するため,凍結した精巣から調整した生殖細胞をヒメマスに移植したところ,移植細胞の生着が確認された.

Abstract : We investigated to the ecology and aquaculture of Kunimasu (*Oncorhynchus kawamurae*) that had rediscovered in Lake Saiko 2010, for contribute to utilize and conservation. The population sizes of Kunimasu were estimated 5,397-6,079-7,501 individuals in 2012 and 4,979-5,459-6,384 individuals in 2013 (longevity was assumed 6, 5, and 4 years, respectively) . As a result of ecological reserch, age composition of Kunimasu is shifted from 1 and 2 year-old (2012) to 3 and 4 year-old (2013 and 2014) , that has been suggested the stock level have variety due to year classes. Adult fish of Kunimasu and Himemasu (*Oncorhynchus nerka*) distributed middle layer from the surface layer, and alevin distributed bottom layer. There is estimated that distributed in depth by the body size, *Daphnia galeata* is main prey of adult and young fish, and the main prey of alevin is Cyclopoidae. The less time of zooplankton, they prey on benthos and midges pupa, in addition to Himemasu prey on fell into the lake terrestrial insects. The spawning environment depends on a gravel area of about 50m², it is necessary to elucidate the layer structure of groundwater.

As a result of farming test, Kunimasu were inferior to Himemasu on growth and survival rate after 2 years old. Himemasu, about 90 % of individuals died with maturation at 3 years old. On the other hand, Kuminasu, 95% of individuals were immature at 3 years old. In addition, spawning season of Kunimasu, compared to that of the Himemasu, was over the long term. We tried artificial insemination using eggs and sperm obtained from Kunimasu, but were not able to obtain the hatching larvae for egg quality was poor. As a result of artificial hybridization between Kunimasu and Himemasu, we obtained reciprocal hybrids of them and confirmed that viability. For producing surrogate parents fish of Kunimasu, germ cells obtained from cryopreserved testis of Kunimasu were inplanted to hatching larvae of Himemasu. As a result, colonization of donor derived germ cells were confirmed in recipient.

1. 緒 言

西湖で再発見されたクニマス (Oncorhynchus kawamurae)の保全並びにヒメマス (Oncorhynchus nerka) 漁業との共存に資するため、生態調査を行うと ともに、クニマスの域外保全と養殖事業化を図るため、 養殖研究を行った.

2014年度は前年度まで^{1.2)}に続き,資源生態及び産卵 環境の調査を行った.

また,人工繁殖魚の飼育特性及び成熟採卵に関する試 験,生殖細胞移植による魚類遺伝資源保存技術³⁾を応用 し,凍結保存精巣を用いたクニマス代理親魚の作出試験 を行った.

2. 実験方法

2-1 資源推定及び生態調査

(1) 標本収集

資源推定のための標本(クニマス及びヒメマス.以下, 単に標本という場合は同じ)は、2012年採集標本²⁾(2012 秋)、2013年9月25,26日,10月1,2,10日の5回(2013 秋) 釣採集した標本を解析に供した.その他,成長また は食性の季節変化を検討するため、2014年3月20,26, 29,30日の4回(2014春)、2014年7月29,30日の2回 (2014夏)、2014年10月1,2,8,9,10日の5回(2014 秋)、それぞれ釣採集により標本を収集した.秋及び夏 標本の採集は西湖漁業協同組合(以下,西湖漁協)に委 託して行った.委託採集では採集地点と水深を記録し氷 冷された生鮮魚を,採集日の正午に回収した.

食性の季節変化の検討のため、湖水の動物プランクト ン試料を採集した.採集は図1のSt.2-4の3地点で、北 原式プランクトンネット(口径20cm、目合100μm)の 垂直曳きにより行った.動物プランクトン試料の採集は 2013年9月25日、2014年3月25日、2014年7月29日 の3回行い、それぞれ水深0-20m、20-40m、40-60mの 3層から採集した.採集後サンプル瓶に約10%濃度とな るようホルマリン原液を加え固定した.採集時に水温 及び溶存酸素量をDOメモリー計(JFEアドバンテック、 ARO2-USB)により0.5秒間隔で計測し、湖底まで水深 約1m間隔で計測値を抽出した.

図1 調査定点の位置

(2) 標本分析

標本は採集当日に全長・標準体長 (1mmまで),体重 (0.1gまで),生殖腺重量 (0.001gまで)を計測し,鱗(年 齢査定)と筋肉 (99.5%エタノール固定,種判別),胃内 容物 (10% ホルマリン固定,食性分析)を採取した後, 10% ホルマリン液で固定し保管した.秋標本の生殖腺は 生鮮試料を東京海洋大学が採取し,同大学大泉実習場に 持ち帰り,クニマス遺伝資源保存の研究に供した.

標本の種判別はハプロタイプ特異的PCR法⁴ (以下, PCR判別)により行った. 性の判別は生殖腺の肉眼観察 により行い,性比について χ^2 検定 (p<0.05を有意差と した.以下他の検定も特記しない限り同じ)を行った.

環境中の動物プランクトン組成及び胃内容物組成の 分析は、2014年7、9月にマリノリサーチ(株に委託した. 胃内容物試料は空胃個体を除くクニマス標本の全数 (2013年秋19試料、2014年春2試料、2014年夏9試料 の計30試料)及びヒメマス標本のうち比較的消化物が少 ないもの(2013年秋11試料、2014年春28試料、2014 年夏9試料の計48試料)とした.分析は種同定(可能な 限り下位の分類まで)及び計数のほか、動物プランクト ン試料ではカイアシ亜綱及びミジンコ亜綱について出現 種の体長(頭部先端から尾部先端または棘付け根まで、 最大30個体)、胃内容物試料では湿重量(0.1mgまで)を 測定した.

各年秋の成長 (標準体長,体重,肥満度) に種間・年 齢間の差があるか,多重比較検定 (Tukey-Kramer法, 以下同じ)を行った. 同齢標本の生殖腺指数 (GSI) に種 間・雌雄間の差があるか,多重比較検定を行った. 肥満 度は体重 (g) /標準体長 (cm)³×1000, GSI は生殖腺重 量 (g) /体重 (g) ×100 により算出した.

(3) 資源推定

年級群の1年間の減少率からの資源量推定 (Virtual population analysis, VPA)⁵⁾を用いて次式により,西湖のヒメマス・クニマス混合の資源尾数Nを推定した.

 $N = C \times (Z / F)$ ただしC:総漁獲尾数, Z:全死 亡係数, F:漁獲死亡係数.

2012, 2013年の各々10月1, 2日の2日間, ヒメマ ス遊漁者の釣獲魚について, びくのぞき調査を行い, 2012年は1,090尾, 2013年は499尾の全長頻度分布を 作成した.また採集標本の年齢査定⁶⁾を行い, 年齢と体 サイズの関係 (Age-Length key) から全長組成分布を年 齢組成に変換し, 平衡状態を仮定して全死亡係数Zを推 定した.最高齢は2012年が3才,2014年が5才であった. そのため寿命を4,5,6才と仮定して得られた自然死亡係 数Mを用いて, 漁獲死亡係数Fを推定した⁷⁾.1年間の 総釣獲尾数Cは,秋田県水産振興センターの「西湖にお けるマス類釣獲実態調査」^{8,9)}(一部未発表データ含む) から, 2012年の秋漁期(10月1日から12月31日,以下 同じ.)及び2013年の春漁期(3月20日から5月31日, 以下同じ.)の推定総釣獲尾数48,419尾を2012年10月1 日時点の,2013年の秋漁期及び2014年の春漁期の推定 総釣獲尾数24,691尾を2013年10月1日時点の1年間の 推定値として用いた.推定された秋解禁日時点のヒメマ ス・クニマスの資源尾数を,PCR判別によるクニマス の比率で案分して,クニマスの資源尾数を推定した.

(4) 成長

2012年及び2013年の秋標本、冬の浮魚標本の年齢と 全長モードから、von Bertalanffyの成長曲線¹⁰⁾を推定し た.定差式から求めたパラメータについて、エクセルの ソルバー機能により実測値と理論値の残差平方和が最小 となるよう、最適解を計算した.このとき極限体長は定 差式から求めた値が過小と考えられたため、過去の採集 標本¹⁾の最大全長から計算した.全長と体重の関係は各 年秋の実測値をもとに、エクセルの回帰分析とソルバー 機能によりアロメトリー式¹¹⁾を求めた.また、2013秋、 2014春・夏・秋のクニマス標本の耳石縁辺部が不透明 帯の個体割合の変化から成長季節を推定した.

(5) 食性

2013秋,2014春及び夏標本をもとに食性を調査した. 原則として全重量の40%以上の胃内容物が科以下まで 同定された標本について,胃内容出現生物の餌重要度指 数(IRI)¹²を,次式により求めた.

IRI=(%N+%W)×%F,%IRI=ある餌生物種のIRI/全 ての餌生物種のIRIの合計×100,%N=胃内容物中のあ る餌生物種の出現個体数/全ての餌生物の出現個体数× 100,%W=胃内容物中のある餌生物種の重量/全ての餌 生物種の重量×100,%F=ある餌生物種を採餌していた 個体数/全ての個体数.

また、胃内容物のうち、動物プランクトンの選択性に ついてChessonの餌選択係数(α)¹³⁾を、次式により求 めた.

 α i= (ri/pi) / Σ (ri/pi), ただし餌種iについて, ri は胃内容物中の個体数割合を, piは環境中の個体数割合 を示す. 餌種数 n と pi は原則として St.3のカイアシ亜綱 及びミジンコ亜綱の計数結果を用いて, プランクトン試 料と標本の採集層ごとに餌選択係数 α を求め, 1/n< α i のとき正の選択性を, 1/n> α iのとき負の選択性を示す ものとした.

餌重要度指数及び餌選択係数の平均は、(4)の成長推 定式から得られた各年齢の理論体重と成熟魚の出現年齢 を参考に、稚魚、幼魚、成魚に大別して求めた.

(6) 生息環境(水温の鉛直分布)

西湖の水温の季節変化を明らかにするため、水温鉛 直分布の連続測定を行った.水温ロガー (HOBO UTBI- 001) を図1のSt.1-5の5地点に水深別(表1)に設置し, 1時間間隔で測定した.併せて湖岸(St.6)に気象計 (DAVIS,ウェザーステーション)及びデータロガーを 設置し,気象条件(気温,風向,風速及び雨量等)を30 分間隔で連続測定した.測定は2012年5月28日から開 始した.

表1 水温ロガーの設置水深

十十二人	- k 27 ()					水温口	ガーの	設置水	深(m)				
地层石	小床(11)	0.5	2	4	6	8	10	12	20	30	40	50	60
St.1	45	0	0	0	0	0	0	0	0	0	0		
St.2	65	0	0	0	0	0	0	0	0	0	0	0	0
St.3	70	0	0	0	0	0	0	0	0	0	0	0	0
St.4	55	0	0	0	0	0	0	0	0	0	0		
St.5	33	0	0	0	0	0	0	0	0				

(7) 生息環境(水中光量子率の鉛直分布)

クニマスの行動と光条件について検討するため、光 量子計(光量子計LI-COR LI-250A,水中用光量子セン サーLI-COR LI-192SA)により水中光量子量の垂直分 布を測定した(測定波長400-700nm).測定は図1のSt.3 において、2014年1月から毎月1回晴天時に、表層から 水深40mまで2m間隔で行った.ただし、8月以降は水 中光量子センサーを紛失したため欠測となった.水中の 光量子量は太陽光の日射量に影響されるため、水面直上 (光量子センサーLI-COR LI-190SA)と水中で同時に光 量子量を測定し、水面直上の光量子量に対する相対光量 子率(%)で評価した.併せて透明度板により透明度を 測定した.水温及び水中光量子量の測定値をもとに、ク ニマス標本のうち、採集水深が概ね特定できたものの採 集水温及び換算照度¹⁴⁾を推定した.

2-2 産卵環境及び産卵生態

(1) 産卵場湖底の潜水調査及び水中観察

クニマスの産卵環境を検討するため、2014年10月 16, 17, 21日, 11月7, 12, 19, 21日の7回, 湖底 (クニ マス産卵保護区及び桑留尾川沖)の潜水調査を行った. 調査項目は湖底砂礫地の大きさと位置, 被泥状況, 水温 ロガー (HOBO UTBI-001) 設置による砂礫地内と湖底 直上水温の計測, 砂礫地の撮影とし, 作業はダイビング ショップ「くまごろう」(山梨県甲府市) に委託した.

産卵保護区の湖底は広範に被泥していると考えられた²⁰ ため、予めGPS魚探(LOWRANCE HDS-10)により 走査した湖底基質反応(解析ソフトPer Pelin DrDepth 5BT)をもとに、砂礫地の可能性が高い潜水起点と探索 方位を選定した.潜降して調査起点となる砂礫地を発見 した後、巻尺(50m)を伸ばしつつ探索方位沿いに目視 調査を行い、砂礫地を発見した場合は目印フロートを打 ち上げて所定の作業を行うとともに、船上でGPS魚探 に位置情報を記録した.潜水深度は安全管理上、35m以 浅とした.主な産卵場と推測された地点の砂礫部位で砂 礫を採取し、目合63, 31.5, 4,2mmのステンレスふるい により粒度を分析した.また,得られた位置情報をもと に,2015年1月28日,2月4日に水中TVカメラロボッ ト (Deep Trecker DTG2.以下,ROV)により産卵場湖 底の観察を行った.これまで12月以降に成熟ヒメマス は採集されていない¹⁾ため,観察された魚影はクニマス と判定した.また明瞭な映像のうち頭背部が弱く隆起し, 吻部が弱い鈎状にみえる個体を雄,頭部から吻端まで丸 みを帯び,頭背部が隆起していない個体を雌,雌のうち 腹部が痩せて尾鰭・尾柄部が損傷した個体を産卵後の雌 と判定し,産卵行動を検討した.

(2) 浮魚の出現動向と冬季の湖内流動向

2011-2014年度の各々11-3月に週2回程度,北岸側 の徒歩可能な湖岸を踏査し,浮魚の出現動向(採集地点, 努力量当り採集数,採集時期)を調査した.

冬季の湖内流検討のため、GPS内蔵小型発信機(NTT DoCoMoPosiseek)を搭載したパケット通信型漂流ブイ (ゼニライトブイ ZTB-P-1A. 以下,漂流ブイ)を用い て,湖内流を調査した.漂流ブイには水の抵抗を受けや すくなるよう自作のドローグを水深別(1,5,10,15,20, 30m)に釣り下げ(図2),同時に同地点から放流した. 漂流ブイから緯度と経度の位置情報を10分毎に受信し 動向を観測した.

併せて湖岸に設置した気象計により,気象条件(気温, 風向,風速,雨量等)を10分間隔で連続測定した.湖内 流の観測は2015年1月27,30日に図1のSt.3で行った.

またGPS内蔵小型発信機を搭載した魚型の発泡スチ ロール製フロート(長さ約25cm,図2)を自作し,産卵 場や流入河川沖,湖底湧水の存在地点¹⁵⁾から放流した ときの漂着地点について,2015年2月19,24,26日の3 回調査した.

図2 漂流ブイ(左)と魚型フロート(右)

2-3 2才魚の飼育特性

(1) 親魚養成

2011年11月から2012年1月にかけて天然魚より採 卵,人工受精により得られたクニマス2才魚^{1,2)}を0.7-3.11tの6水槽に収容し,紫外線滅菌した12℃の地下水 掛け流し(以下同じ)で飼育した.餌は,市販のマス類 配合飼料を1日3-5回,週5日,手撒き給餌した.4週ご とに各池の総魚体重を測定し,2014年4月まではライ トリッツ給餌率¹⁶⁾の60%量,2014年5月以降は100% 量を給餌した.また,成熟個体が出現した2014年9月 以降は摂餌が鈍ったため,適宜飽食量を給餌した.

(2) クニマスとヒメマスの比較飼育試験

前報²⁾の比較飼育試験に供したクニマスとヒメマス を,引き続き飼育し成長等を比較した.試験期間は前報 の飼育期間(2013年7月26日から2014年3月11日)を 含め、ヒメマス成熟個体が初めて認められた2014年9 月5日まで(406日間)とした.飼育は3.11tのコンクリー ト池(1.5×4.6×0.45 m)2面を使用した(注水量1.25 L / sec).給餌量は2014年4月までは両種ともライトリッ ツ給餌率の60%量,2014年5月以降は100%量とし,1 日3-5回,手撒き給餌した.成熟個体が出現し始めた 2014年9月以降は,摂餌が鈍ったため,適宜飽食量を 給餌した.

これら供試魚について,4週間ごとに両種各々30尾を 適宜取り揚げて総魚体重,全長及び体重を計量し,給餌 量を補正した.また,総魚体重と給餌量から飼料効率, 日間増重率及び日間給餌率を算出した.

(3) 成熟状況調査

2014年9月3日から2015年3月18日にかけて,7日 ごとにクニマス全飼育個体の熟度鑑別を行った.また, (2)の比較飼育試験に供したヒメマスを対照として,ク ニマスに併せて熟度鑑別を行い,二次性徴を呈した個体 の背鰭基部にアンカータグで標識し,個体識別した.

(4) 飼育魚からの人工採卵

(3)の調査の際に排卵した個体が認められた場合に は、切開法により採卵し人工受精を行った.雌の排卵時 に排精した雄がいなかった場合やその逆の場合には、ヒ メマスの精子または卵を用いて正逆交雑を行った.採卵 の際は体重、全長、採卵数及び吸水後の卵径を記録した. 受精卵は0.3mm目のカゴ(12.5×16.5×12.5cm)に収容 して管理し、発眼率、ふ化率及び浮上率を記録した.

2-4 凍結精巣からのクニマス代理親魚の作出

(1) 精巣凍結及び移植用細胞の調製

移植用ドナーとして用いたクニマスは飼育中の雄の幼 魚 (1-2才) で、2013年12月から2014年12月までの間 に適宜精巣を摘出し、Lee et al.¹⁷⁾の方法により、液体 窒素中で凍結保存した.

2014年11月以降の移植実験につき,1回あたり2-11 個体分の凍結精巣を用い,Lee et al.¹⁷⁾の方法により解 凍した後,Okutsu et al.¹⁸⁾の方法に従い細胞を分散させ た.細胞はレシピエントへの生着状況確認のため,蛍 光 染 色 (Sigma-Aldrich PKH²⁶⁾ を 施 し,2-4×104細 胞/μLとなるよう5% FBS, 25mM HEPES, 2mM L-glutamine, 50 μ M Y-27632¹⁸⁾を含む MEM 培地に懸 濁させ移植に供した (図3a, b).

図3 移植用細胞(a:明視野, b:蛍光視野, バー20 µm)

(2) 細胞移植

移植はTakeuchi et al.¹⁹⁾の方法に準じ、マイクロイン ジェクター (Narishige IM-9A) とマイクロマニピュレー ター (Narishige MP-1)を備えた実体顕微鏡 (Olympus SZX10)下で行った.移植細胞数は1個体あたり約 5,000-10,000細胞とし、腹腔内に微量注入した (図4).

図4 クニマス細胞を移植したヒメマス仔魚(バー10mm)

(3) 移植細胞の生着確認

移植約30日後に,各移植例ごとに移植個体の一部を 解剖し,蛍光顕微鏡 (Olympus BX53)下で蛍光染色され た移植細胞のレシピエント生殖隆起への生着状況を観察 し,生着率を判定した.

3. 結果

3-1 資源推定及び生態調査

(1) 採集標本

2013秋標本150尾(クニマス21尾, ヒメマス129 尾),2014春標本124尾(クニマス2尾, ヒメマス122 尾),2014夏標本19尾(クニマス10尾,ヒメマス9尾), 2014秋標本185尾(クニマス5尾,ヒメマス180尾)の 計478標本(クニマス34尾,ヒメマス444尾)を採集した.2012秋標本238尾(クニマス17尾,ヒメマス221尾) を加えると採集標本は716標本(クニマス51尾,ヒメマ ス665尾)で,両種の採集地点は主湖盆の沖合全域と副 湖盆のブナイ沖,採集水深は8mから湖底(最大56m)の 範囲であった.

採集されたクニマスは1-5才(標準体長14-28cm)で, 2012年のクニマス及び2012-2014年のヒメマスでは1, 2才の採集割合が高かったのに対して,2013年以降の クニマスでは3,4才が中心で,1,2才はほぼ採集されな かった(図5-7).

図6 クニマスの年齢-体長組成(2012-2014年)

(2) 標本及び試料の分析

各年秋標本の種間,年齢間の成長形質の多重比較で は同年同齢間で種間の差は見出せず,採集年による差 が示唆された.すなわち,2013年の2才以上の標本は, 2012,2014年の同齢以上の両種またはいずれかに対し 比較的成長が大きかった.また,2013年0才ヒメマスが, 秋標本の中で最も肥満度が小さかった(表2).

GSIは、未成熟魚では雌は雄より大きく、両種の間に 雌雄差は認められなかった.また、性比は2012秋1才・ 2013秋2才ヒメマス、2013秋0才・2014秋1才ヒメマ スのみ、雄に偏っていた(表3).

クニマス 年齢 標本数 標準体長(cm) 体重(g) 肥満度 $15.1 \pm 1.0^{k,n,c}$ 12.7 ± 0.3 9 1⁶ 442 + 922012秋 <u>17.1±0.5°,p</u> 12 12.5 ± 0.8 $62.0 \pm 8.4^{\circ}$ 10 3 $20.2 \pm 1.9^{\circ}$ $108.0 \pm 24.3^{e,p}$ 12.9 ± 0.9^{j} $14.2 \pm 0.6^{a,b,g,h,j,k,n}$ 2013秋 4^d 10 21.4 ± 2.2 143.7 ± 52.3 274 3228 157 2014春 4 2 20.9 ± 0.8 116.3 ± 0.3 12.8 ± 075 2 18.4 77.6 12.5 1 3 5 21.0 ± 1.2 130.9 ± 31.1 14.0 ± 1.0 2014夏 22.8 ± 4.0 165.5 ± 79.1 13.5 ± 0.5 4 2 26.8 ± 1.7 277.1 ± 50.0 14.8 ± 0.9 3 49.5±13.7 15.5 ± 1.7^{P} 3° 12.7 ± 0.6^{j} 2014秋 120.2 ± 7.1 20.3 ± 0.1 144 ± 06^{j} ヒメマス 標準体長(cm) 肥満度 年齢 標本数 体重(g) 13.7 12.5 0 1 10.3 $13.9 \pm 1.1^{k,n}$ 1^g 155 36.0 ± 8.4^{n} 13.2 ± 0.8^{j} 2012秋 2^h 54 $15.9 \pm 1.0^{\circ,p}$ 51.7 ± 10.4 $12.8\pm0.8^{\rm j}$ 11 18.3 ± 3.6^{P} 95.6 ± 81.7^{P} 13.2 ± 1.3 3 46 10.3 7.5 ± 2.7 11.9 ± 1.0 0 12 12.1 ± 2.1 23.7 ± 15.9 12.3 ± 1.3 $18.6 \pm 1.4^{h.o}$ 91.7±25.0^{e,o,p} $14.0 \pm 0.9^{a,b,g,h,j,k}$ 2 63 2013秋 $14.2 \pm 1.1^{a,b,g,h,j,k}$ 131.8±18.2^{e,p} 6 $21.0 \pm 0.8^{i,p}$ 2ⁿ 4 1 22.3 150.8 13.6 22.4 164.8 14.7 73 90 ± 13 8.5 ± 4.5 108 ± 11 1 2014寿 2 38 128 ± 23 27.7 ± 17.9 11.9 ± 1.1 11 16.9 ± 2.5 64.7 ± 30.3 12.8 ± 1.1 9.6 ± 1.0 11.2 ± 3.1 12.3 ± 0.3 4 2014夏 2 2 13.8 ± 3.9 36.6 ± 28.4 12.5 ± 0.1 19.4 ± 1.4 100.9 ± 30.1 13.5 ± 1.0 3 3 37 11.2 ± 0.9 18.4 ± 4.8 1ⁿ 13.0 ± 0.7^{j} 13.8±0.8^{a,b,c,g,h,j,k,n} 2014秋 118 131 ± 09 2° 316 ± 64 <u>13.7±0.8^{a,b,g,h,j,k,n}</u> 25 14.3 ± 1.5 41.0 ± 14.7 3^p

いずれも平均値士標準偏差

肥満度:体重/体長³×1000 年齢欄のa-p:符号を付した全標本間で検定し、平均値に付けた符号は同項目の符 号年齢欄の平均値より大きいことを示す(Tukey-Kramer法、p<0.05)

(例;2012秋クニマス2才は2014秋ヒメマス2,3才より体長が大きい)

表3 収集標本の性と成熟状況

クニマス						
種名	年齢	性別	標本数	性比	GSI	備考
		♂ ^{a1}	4	1.0	0.03 ± 0.02	
	1	우 ^{b1}	4	1.0	0.11±0.05 ^{a1,c1,e1,g1}	
2012秋		不明	1			
	2	♂ ^{1a2}	5	0.7	0.04 ± 0.01	
	2	우 ^{b2}	7	0.7	$0.23 \pm 0.17^{a2,c2,e2,g2}$	
	2	♂ ^{a3}	3	0.4	0.03 ± 0.03	
	3	우 ^{b3}	7	0.4	0.34 ± 0.11	
2013秋	4	♂ ^{1a4}	2	0.2	3.70 ± 0.41^{b4}	二次性徵1
	4	우 ^{b4}	8	0.5	0.30 ± 0.15	
5		5	1		0.31	
2014春	4	우	2		0.47 ± 0.61	
	2	우	1		0.4	
	3	5	3	15	0.70 ± 0.78	
		우	2	1.0	0.70 ± 0.85	
2014夏	4	r∿	1	10	2.79	二次性徴1
		우	1	1.0	0.97	
	5	2 ¹	1	10	1.80	
		우	1	1.0	5.49	二次性徵1
	3	r∿	2	2.0	0.01 ± 0.01	
2014秋		우	1	2.0	0.16	
201417	4	ď	1	10	0.04	
⁴	1	1.0	6.14	二次性徴1		

表2 収集標本の体サイズ

<u> ビブイム</u> 話 夕	在龄	性別	檀木粉	性王	GSI	備去
	<u>十面</u>	군	<u>1示平奴</u> 1		0.02	1111 75
	1	م ^{ا د1}	124	4.0*	0.03±0.02	
	'	우 ^{d1}	31	4.0	0.14±0.05 ^{a1,c1,e1,g1}	
2012秋	2	d ^{, c2}	31	1.4	0.04 ± 0.03	
	2	우 ^{d2}	23	1.4	$0.19 \pm 0.06^{a2,c2,e2,g2}$	
	•	♂ ^{°C3}	8	0.7	0.43±1.18	排精1
	3	우 ^{d3}	3	Z./	0.30 ± 0.16	
		- 7	30	*	0.02 ± 0.02	
	0	우	11	2.7	0.20 ± 0.12	
		不明	5			
	1	∂ ^{re1}	8	2.0	0.02±0.03	
	'	우 ^{f1}	4	2.0	$0.26 \pm 0.10^{a1,c1,e1,g1}$	
		♂ ^{1e2}	54	o o*	0.22±0.86	排精2
2013秋	2	우 ^{f2}	9	6.0	$0.35 \pm 0.14^{a2,c2,e2,g2}$	
		不明	1			
	0	∿	1	0.0	0.02	
	3	우	5	0.2	0.44 ± 0.15	
	4	₹	1		0.03	
	5	ď	1		0.07	
	1	5	57	0.0*	0.02 ± 0.01	
		우	16	3.0	0.24 ± 0.11	
2014 寿	2	5	20	1 1	0.02 ± 0.01	
2014合	2	우	18	1.1	0.21 ± 0.15	
	2	2	5	0.0	0.07 ± 0.08	
		우	6	0.0	0.10 ± 0.04	
2014夏	1	5	2		0.03 ± 0.001	
	2	2	1	1.0	0.01	
	2	우	1	1.0	0.10	
	3	5	2	20	4.58 ± 6.45	二次性徴1
		우	1	2.0	5.30	二次性徵1
	1	♂ ^{1g1}	29	2.6*	0.02 ± 0.03	
	· ·	우 ^{h1}	8	3.0	$0.16 \pm 0.05^{a1,c1,e1,g1}$	
2014利	2	ơ¹ ^{g2}	79	0.0*	0.03 ± 0.03	
201478	۷	우 ^{h2}	39	2.0	$0.14 \pm 0.09^{a2,c2,e2,g2}$	
	2	∂ ^{re3}	11	0.0	0.05 ± 0.03	
	კ	우 ^{f3}	14	0.8	0.10 ± 0.12	
GSI: 生殖腸	電量/化	· 重×100)(平均值=	±標準偏差	ŧ)	

表3 収集標本の性と成熟状況(続き)

二次性徵:体色/体形変化

性別欄のa-h:各符号を付した同齢の標本間で検定し、平均値に付けた符号は符号年 齢欄の平均値より大きいことを示す(Tukey-Kramer法、p<0.05)(例:2012年秋のクニ マス1オメスは2012-2014秋クニマス及びヒメマス1オオスよりGSIが高い) 性比欄の*:性比がオスに偏る(χ²検定、p<0.05)

湖水の動物プランクトン組成及び水質は、各定点と も同様の傾向を示した.St.3 (湖心)の水質を図8,9に、 動物プランクトンの密度組成比を図10に示す.成層期 (2013秋,2014夏)には10-20mの間に水温躍層が形成 され、躍層上部に溶存酸素濃度の極大が認められた.

図10 動物プランクトン密度組成の季節変化(St.3)

トゲナガワムシ (Kellicottia longispina), ナガミツウデ ワムシ (Filinia longiseta) などのワムシ類及びゾウミジンコ (Bosmina longirostris) の密度が高く,大型のミジンコ類や カイアシ類の密度が低く,春以降秋にかけて増加する傾向 は2012年同様であった.2013秋は,前年秋²⁾及び2014 春夏よりワムシ類が少なく大型プランクトンが多かった.

各季節に出現したカイアシ類及びミジンコ類の平均体長 を表4に示す.2012年調査でクニマス・ヒメマスの餌選 択性が高かったのはカブトミジンコ (Daphnia galeata) で あった²⁾が,湖水出現種の最大はノロ (Leptodora kindtii) の約4mmで,カブトミジンコとヤマトヒゲナガケンミジン コ (Eodiaptomus japonicus) の体長 (いずれも約1mm) に差 はなかった.前年²⁾に負の餌選択性を示したゾウミジンコ は,各季節の出現種 (ノープリウス幼生除く)の中で最小 (0.5mm未満) であった.大型の動物プランクトンは秋に多 く,春は種数が少なく密度も低いうえ、幼体が多かった.

表4 動物プランクトンの体サイズ

1) 2013秋	採集水深		0-20m		20-40m
	種名	計数(n)	体長(mm)	計数(n)	体長(mm)
ヤマト	ヒゲナガケンミジンコ゜	30	$1.05 \pm 0.10^{b,d,g,h,i}$	3	0.96 ± 0.01
ヒゲナガケンミシ	ジンコ科 (コペポーダ) ^b	30	0.59 ± 0.13	30	$0.61 \pm 0.11^{d,h,i}$
	ケンミジンコ				
	ケンミジンコ属				
キクロ	コプス科 (コペポーダ) ^c			2	0.59 ± 0.14
ソコミ	ジンコ目 (コペポ ー ダ)	1	0.56		
カイアシ	ィ亜綱(ノ ー プリウス)	30	0.24 ± 0.03	30	0.20 ± 0.03
	オナガミジンコ ^d	30	$0.90 \pm 0.16^{d,h,i}$	1	0.95
	オナガミジンコ属。	30	0.52 ± 0.11	6	0.82 ± 0.07
	カブトミジンコ	30	$1.00 \pm 0.07^{d,e,g,h,i}$	30	$1.00 \pm 0.09^{b,d,g,h,i}$
	カブトミジンコ (幼体) ^g	30	0.53 ± 0.08	30	$0.62 \pm 0.08^{d,h,i}$
	ゾウミジンコ ^h	30	0.40 ± 0.05	30	$0.43 \pm 0.04^{d,i}$
	ゾウミジンコ属 (幼体) ⁱ	30	0.27 ± 0.04	30	0.29 ± 0.05^{d}
	70	30	394+141 ^{a,b,d,e,f,g,h,i}		

表4 動物プランクトンの体サイズ(続き)

1) 2013秋 採集水深		40-60m		
種名	計数(n)	<u>体長(mm)</u>		
ヤマトヒゲナガケンミジンコ	2	1.06±0.02		
ヒゲナガケンミジンコ科(コペポーダ)"	30	$0.55 \pm 0.11^{0.0.0}$		
ケンミジンコ属	4	1.16 ± 0.09		
キクロプス科 (コペポーダ) ^c	30	$0.75 \pm 0.18^{b,d,g,h,i}$		
ソコミジンコ目(コペポーダ)		0.04.1.0.05		
カイアシ亜綱(ノーブリウス)	30	0.24 ± 0.05		
オナカミジンコ	3	1.1		
オナカミシンコ属	30	1.02 ± 0.15 ^{b,c,d,g,h,i}		
カブトミンジノコ カブトミンジンコ (かは) ⁸	30	1.02 ± 0.13		
バウミジンコ (如本)	30	0.42 ± 0.03^{d_i}		
ノ ノニノンコ ゾウミジンフ属 (幼休) ⁱ	30	0.29 ± 0.04		
	1	2.2		
2) 2014春 採集水深		0-20m		20-40m
	計数(n)	体長(mm)	計数(n)	体長(mm)
キクロプス科(コペポ ー ダ) ^a ディアキクロプス属	13	0.54±0.10 ^{b,c,d}	29	$0.52 \pm 0.09^{b,c,d}$
カイアシ亜綱(ノ ー プリウス) ^b	30	0.18 ± 0.04	30	0.19 ± 0.04
カブトミジンコ	2	1.07 ± 0.08	2	0.62 + 0.14
カノトミンシュ(幼生)	30	0.20 ± 0.04 ^{b,d}	30	0.63±0.14
ノリミシンコ (加休) ^d	30	0.39 ± 0.04 0.25 ± 0.03 ^b	30	0.43 ± 0.03 0.22 ± 0.03
		0.20 ± 0.00	2	0.6±0.01
0) 0014 寿 一 / / 使生 水 须		40-60m		
<u>2) 2014春 抹朱小床</u> 種名	計数(n)	体長(mm)		
キクロプス科(コペポーダ) ^a	28	$0.54 \pm 0.13^{b,c,d}$		
ディアキクロプス属	1	1.08		
カイアシ亜綱(ノープリウス)	30	0.20 ± 0.05		
カプトミンシュ カプトミジンコ(幼牛)	2	0.96 ± 0 0.71 ± 0.06		
ゾウミジンコ゜	30	$0.39 \pm 0.04^{b,d}$		
ゾウミジンコ(幼体) ^d	30	0.29 ± 0.05^{b}		
トロオミジンコ				
2) 2014夏 採集水深	-1.30 / 3	0-20m	- 1 347 4 3	20-40m
2) 2014夏 採集水深 種 名	計数(n)	0-20m 体長(mm)	計数(n)	20-40m 体長(mm)
<u>2) 2014夏 採集水深</u> <u>4</u> 名 ヤマトヒゲナガケンミジンコ ^a ヒゲナガケンミジンコ科(コペポーダ)	<u>計数(n)</u> 2 11	0-20m 体長(mm) 1.21±0.16 0.55±0.14	<u>計数(n)</u> 6	20-40m 体長(mm) 0.50±0.07
2) 2014夏 採集水深 種名 ヤマトヒゲナガケンミジンコ ³ ヒゲナガケンミジンコ料(コペポーダ) オナガケンミジンコ	<u>計数(n)</u> 2 11	0-20m 体長(mm) 1.21±0.16 0.55±0.14	<u>計数(n)</u> 6	20-40m 体長(mm) 0.50±0.07
2) 2014夏 探集水深 2) 2014夏 探集水深 14 20 2014 ママトヒゲナガケンミジンコ ビゲナガケンミジンコ科(コペポーダ) オナガケンミジンコ属 ケロマブマ計	<u>計数(n)</u> 2 11	0-20m 体長(mm) 1.21±0.16 0.55±0.14	計数(n) 6	20-40m 体長(mm) 0.50±0.07
	<u>計数(n)</u> 2 11	0-20m 体長(mm) 1.21±0.16 0.55±0.14	<u>計数(n)</u> 6	20-40m 体長(mm) 0.50±0.07 0.85
	<u>計数(n)</u> 2 11 2 8	0-20m 体長(mm) 1.21±0.16 0.55±0.14 1.02±0.12 0.48±0.13	<u>計数(n)</u> 6 1 23	20-40m 体長(mm) 0.50±0.07 0.85 0.49±0.20 ^{c.g.h}
2) 2014夏 採集水深 准 名 ヤマトヒゲナガケンミジンコ ⁴ トゲナガケンミジンコ ⁴ ビゲナガケンミジンコ料(コペポーダ) オナガケンミジンコ属 ケンミジンコ属(コペポーダ) キクロプス科 ケンミジンコ属(コペポーダ) キクロプス科 マンコズス科 マンミジンコ属(コペポーダ)	<u>計数(n)</u> 2 11 2 8	0-20m 体長(mm) 1.21±0.16 0.55±0.14 1.02±0.12 0.48±0.13	<u>計数(n)</u> 6 1 23 2	20-40m 体長(mm) 0.50±0.07 0.85 0.49±0.20 ^{c.g.h} 0.41±0.01
2) 2014夏 採集水深 准 名 ヤマトヒゲナガケンミジンコ オナガケンミジンコ ヒゲナガケンミジンコ オナガケンミジンコ ケンミジンコ属 キクロプス科 ケンミジンコ属(コペポーダ) キクロプス科 ケンミジンコ属(コペポーダ) シロジス県 キクロプス科 マンミジンコ属(コペポーダ) カンミジンコ目(コペポーダ) カイアシ亜綱(ノーブリウス)°	<u>計数(n)</u> 2 11 2 8 30	0-20m 体長(mm) 1.21±0.16 0.55±0.14 1.02±0.12 0.48±0.13 0.16±0.03	<u>計数(n)</u> 6 1 23 2 30	20-40m 体長(mm) 0.50±0.07 0.85 0.49±0.20 ^{c.g.h} 0.41±0.01 0.18±0.04
2) 2014夏 探集水深 名 ママトヒゲナガケンミジンコ ⁴ ヒゲナガケンミジンコ レゲナガケンミジンコ オナガケンミジンコ ケンミジンコ属 (コペポーダ) キクロブス科(コペポーダ) ショニジンコ目(コペポーダ) カイアシ亜綱(ノーブリウス) ^o オナガミジンコ ^d	<u>計数(n)</u> 2 11 2 8 30 14	0-20m 体長(mm) 1.21±0.16 0.55±0.14 1.02±0.12 0.48±0.13 0.16±0.03 0.88±0.05 ^{c.g.h}	<u>計数(n)</u> 6 1 23 2 30 4	20-40m 体長(mm) 0.50±0.07 0.85 0.49±0.20 ^{c.g.h} 0.41±0.01 0.18±0.04 0.88±0.03
	<u>計数(n)</u> 2 11 2 8 30 14 26	0-20m 体長(mm) 1.21±0.16 0.55±0.14 1.02±0.12 0.48±0.13 0.16±0.03 0.88±0.05°.gh 0.55±0.10	<u>計数(n)</u> 6 1 23 2 30 4 3	20-40m 体長(mm) 0.50±0.07 0.85 0.49±0.20 ^{c.g.h} 0.41±0.01 0.18±0.04 0.88±0.03 0.55±0.14
2) 2014夏 探集水深 准名 ヤマトヒゲナガケンミジンコ ⁴ ヒゲナガケンミジンコ トゲナガケンミジンコ ケンミジンコ属 キクロプス科 ケンミジンコ属(ロペポーダ) ^b ソコミジンコ目(コペポーダ) ^b ソコミジンコ目(コペポーダ) ^b オナガミジンコ ^d オナガミジンコ ^d オナガミジンコ ^d オナガミジンコ ^d	<u>計数(n)</u> 2 11 2 8 30 14 26 3 3	0-20m 体長(mm) 1.21±0.16 0.55±0.14 1.02±0.12 0.48±0.13 0.16±0.03 0.88±0.05 ^{c.g.h} 0.55±0.10 1.04±0.05	計数(n) 6 1 23 2 30 4 3 1 2	20-40m 体長(mm) 0.50±0.07 0.85 0.49±0.20 ^{c.g.h} 0.41±0.01 0.18±0.04 0.88±0.03 0.55±0.14 1.21 0.62±0.16
	<u>計数(n)</u> 2 11 2 8 30 14 26 3 30 30	$\begin{array}{c} \hline 0-20m & $$ $$ $$ $$ $$ $$ $$ $$ $$ $$ $$ $$ $$	<u>計数(n)</u> 6 1 23 2 30 4 3 1 2 30	$\begin{array}{c} 20-40m \\ \hline & & & & \\ \hline & & & \\ \hline & & & \\ \hline & & & \\ 0.50\pm0.07 \\ \hline & & \\ 0.85 \\ 0.49\pm0.20^{c_gh} \\ 0.41\pm0.01 \\ 0.18\pm0.04 \\ 0.88\pm0.03 \\ 0.55\pm0.14 \\ 1.21 \\ 0.62\pm0.16 \\ 0.27\pm0.04^{c_h} \end{array}$
2) 2014夏 採集水深 種える ヤマトヒゲナガケンミジンコ ⁴ ヒゲナガケンミジンコ ⁴ レゲナガケンミジンコ ケンミジンコ属(コペポーダ) オクロブス科 ケンミジンコ属(コペポーダ) ウンミジンコ属(コペポーダ) ウンミジンコ国(コペポーダ) カイアシ亜綱(ノーブリウス) ^o オナガミジンコ属 ⁶ オナガミジンコ属 ⁶ オナガミジンコ カブトミジンコ ⁵ リウミジンコ ⁵	<u>計数(n)</u> 2 11 2 8 30 14 26 3 30 30 30	$\begin{array}{c} 0-20m \\ \hline & & & & & \\ \hline & & & & \\ \hline & & & \\ 1.21\pm0.16 \\ 0.55\pm0.14 \\ \hline & & \\ 1.02\pm0.12 \\ 0.48\pm0.13 \\ 0.16\pm0.03 \\ 0.88\pm0.05^{\circ.g.h} \\ 0.55\pm0.10 \\ 1.04\pm0.05 \\ 0.66\pm0.15^{\circ} \\ 0.38\pm0.04 \\ 0.25\pm0.02 \\ \end{array}$	計数(n) 6 1 23 2 30 4 3 1 2 30 30 30	$\begin{array}{c} 20-40m \\ \hline & & & \\ \hline & & \\ \hline & & \\ \hline & & \\ 0.50\pm0.07 \\ \hline & & \\ 0.85 \\ 0.49\pm0.20^{c_gh} \\ 0.41\pm0.01 \\ 0.18\pm0.04 \\ 0.88\pm0.03 \\ 0.55\pm0.14 \\ 1.21 \\ 0.62\pm0.16 \\ 0.37\pm0.04^{c_h} \\ 0.24\pm0.04 \\ \hline \end{array}$
	<u>計数(n)</u> 2 11 2 8 30 14 26 3 30 30 30 30	$\begin{array}{c} 0-20m \\ \hline \mbox{k\sc (mm)$} \\ 1.21 \pm 0.16 \\ 0.55 \pm 0.14 \\ \hline \mbox{1.02} \pm 0.12 \\ 0.48 \pm 0.13 \\ 0.16 \pm 0.03 \\ 0.88 \pm 0.05^{c,g,h} \\ 0.55 \pm 0.10 \\ 1.04 \pm 0.05 \\ 0.66 \pm 0.15^{c} \\ 0.38 \pm 0.04 \\ 0.25 \pm 0.02 \\ \hline \end{array}$	計数(n) 6 1 23 2 30 4 3 1 2 30 30 30 1	$\begin{array}{c} 20-40m \\ \hline & & $ $ $ $ $ $ $ $ $ $ $ $ $ $ $ $ $$
2) 2014夏 採集水深 種名 ヤマトヒゲナガケンミジンコ ⁴ ヒゲナガケンミジンコ トゲナガケンミジンコ ケンミジンコ属 キクロプス科(コペポーダ) ^b ソコミジンコ目(コペポーダ) ^b ソコミジンコ目(コペポーダ) ^b フコドジンコ属 ⁶ オナガミジンコ属 ⁶ オナガミジンコ オナガミジンコ オナガミジンコ カブトミジンコ カブトミジンコ カブトミジンコ (幼体) ^h ジウミジンコ ⁵ ノウミジンコ ⁵ ノヴミジンコ ⁵ ノヴミジンコ コペポーダ ノヴェジンコ コペポーダ ノーブリウス) ^c	<u>計数(n)</u> 2 11 2 8 30 14 26 3 30 30 30 30 30	$\begin{array}{c} \hline 0-20m & $(k \leq (mm))$\\ \hline 1.21 \pm 0.16 & (0.55 ± 0.14)\\ \hline 1.02 \pm 0.12 & (0.48 ± 0.13)\\ \hline 0.48 \pm 0.13 & (0.16 ± 0.03)\\ \hline 0.88 \pm 0.05^{\circ,g,h}$\\ \hline 0.55 \pm 0.10 & (1.04 ± 0.05)\\ \hline 0.66 \pm 0.15^{\circ}$\\ \hline 0.38 \pm 0.04 & (0.25 ± 0.02)\\ \hline 3.94 \pm 1.41^{a.c.de,f,g,h}$\\ \hline \end{array}$	計数(n) 6 1 23 2 30 4 3 1 2 30 30 1 4	$\begin{array}{c} 20-40m \\ \hline \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \$
2) 2014夏 採集水深 種名 ヤマトヒゲナガケンミジンコ科 ヒゲナガケンミジンコ科(コペポーダ) オナガケンミジンコ属 キクロプス科(コペポーダ) ウンミジンコ属(コペポーダ) キクロプス科(コペポーダ) ウンミジンコ国(コペポーダ) カイアシ亜綱(ノーブリウス) ^c オナガミジンコ属 ^c オナガミジンコ カブトミジンコ カブトミジンコ カブトミジンコ カブトミジンコ (幼体) ^f ゾウミジンコ ^g ソウミジンコ ^g ノウミジンコ ^g ノウミジンコ ^g ノウミジンコ ^g ノウミジンコ ^g ノウミジンコ ^g ノウミジンコ ^g ノウミジンコ ^g ノロ ノロ ノロ 2) 2014夏 探集水深	<u>計数(n)</u> 2 11 2 8 30 14 26 3 30 30 30 30 30	0-20m 体長(mm) 1.21±0.16 0.55±0.14 1.02±0.12 0.48±0.13 0.16±0.03 0.88±0.05°.gh 0.55±0.10 1.04±0.05 0.66±0.15° 0.38±0.04 0.25±0.02 3.94±1.41 ^{ac.de.fg/h}	計数(n) 6 1 23 2 30 4 3 1 2 30 30 30 1 4	$\begin{array}{c} 20-40m \\ \hline \mbox{k} \mbo$
2) 2014夏 採集水深 確 採集水深 セオトレゲナガケンミジンコ ⁴ キャマトレゲナガケンミジンコ ⁴ レゲナガケンミジンコ科(コペポーダ) オナガケンミジンコ属(コペポーダ) ケンミジンコ属(コペポーダ) キクロブス科(コペポーダ) ソコミジンコ目(コペポーダ) オナガシンゴ ガナンミジンコ国(コペポーダ) カイアションコ カイアシ亜綱(ノーブリウス) ^c オナガミジンコ オナガミジンコ ガブトミジンコ カブトミジンコ ガブトミジンコ カブトミジンコ リケミジンコ シガシミジンコ シガシミジンコ ノロ ソウミジンコ属 ノロ ノロ 2) 2014夏 採集水深 種 名	計数(n) 2 11 2 8 30 14 26 3 0 30 30 30 30 30	0-20m 体長(mm) 1.21±0.16 0.55±0.14 1.02±0.12 0.48±0.13 0.16±0.03 0.88±0.05°.gh 0.55±0.10 1.04±0.05 0.66±0.15° 0.38±0.04 0.25±0.02 3.94±1.41 ^{a.c.de.fg.h} 40-60m 体長(mm)	計数(n) 6 1 23 2 30 4 3 1 2 30 30 1 4	$\begin{array}{c} 20-40m \\ \hline k \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \$
	<u>計数(n)</u> 2 11 2 8 30 14 26 3 0 30 30 30 30 30 30 6	0-20m 体長(mm) 1.21±0.16 0.55±0.14 1.02±0.12 0.48±0.13 0.16±0.03 0.88±0.05°gh 0.55±0.10 1.04±0.05 0.66±0.15° 0.38±0.04 0.25±0.02 3.94±1.41°c.de.fgh 40-60m 体長(mm) 0.59±0.12	計数(m) 6 1 23 2 30 4 3 30 30 30 30 1 4	$\begin{array}{c} 20-40m \\ \hline \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \$
ビーリッシンコ 注意 「「「」」」」」 「「」」」」 「「」」」」 「「」」」」 「「」」」」 「」」」」 「」」」」 「」」」」 「」」」」 「」」」」 「」」」」 「」」」」」 「」」」」」 「」」」」」 「」」」」」 「」」」」」 「」」」」」 「」」」」」」 「」」」」」 「」」」」」」 「」」」」」」 「」」」」」」」」 「」」」」」」」」」 「」」」」」」 「」」」」」」 「」」」」」 「」」」」」 「」」」」」 「」」」」」」」 「」」」」」」 「」」」」」 「」」」」」 「」」」 「」」」 「」」」」 「」」」 「」」」」 「」」」」 「」」」」 「」」」」 「」」」」 「」」」」 「」」」 「」」」 「」」」 「」」」 「」」」 「」」」 「」」」 「」」」」 <th」」< th=""> <th」」」< th=""> <th」」」< th=""></th」」」<></th」」」<></th」」<>	<u>計数(n)</u> 2 11 2 8 30 14 26 3 0 30 30 30 30 30 30 30 6 1	$\begin{array}{c} 0-20m \\ \hline \mbox{k\[mm]$} \\ \hline \mbox{$k$\[mm]$} \\ 1.21 \pm 0.16 \\ 0.55 \pm 0.14 \\ \hline \mbox{1.02} \pm 0.12 \\ 0.48 \pm 0.13 \\ 0.16 \pm 0.03 \\ 0.88 \pm 0.05^{c.g.h} \\ 0.55 \pm 0.10 \\ 1.04 \pm 0.05 \\ 0.66 \pm 0.15^c \\ 0.38 \pm 0.04 \\ 0.25 \pm 0.02 \\ \hline \mbox{3.94} \pm 1.41^{a.c.d.e.f.g.h} \\ \hline \mbox{$4.0-60m$} \\ \hline \\mbox{$4.0-60m$} \\ \hline \\mbox{$4.0-60m$} \\ \hline \\mbox{$4.0-60m$} \\ \hline \\mbox{$4.0-60m$} \\ \hline \mbox{$4.0-60m$} \\ \hline \\mbox{$4.0-60m$} \\ \hline \mbox{$4.0-60m$} \\ \hline \\mbox{$4.0-60m$} \\ \hline \$4.0-60m$$	計数(n) 6 1 23 2 30 4 3 30 4 30 30 1 4	$\begin{array}{c} 20-40m \\ \hline \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \$
ビーリッシンコ 注意 「「「」」」」」 「「」」」」 「「」」」」 「「」」」」 「」」」」 「」」」」 「」」」」 「」」」」 「」」」」 「」」」」 「」」」」 「」」」」 「」」」」 「」」」」 「」」」」 「」」」」 「」」」」 「」」」」 「」」」 「」」」」 「」」」」 「」」」」 「」」」」 「」」」」 「」」」 「」」」」 「」」」」 「」」」」 「」」」」 「」」」」 「」」」」 「」」」」 「」」」」 「」」」」 「」」」」 「」」」 「」」」 「」」」 「」」」 「」」」 「」」」 「」」」 「」」」 「」」」 「」」」 「」」」 「」」」 「」」」 「」」」 「」」」 「」」」 「」」」 「」」」 「」」」 「」」」 「」」」 「」」」 「」」」 「」」」 「」」」 「」」」 「」」」 「」」」 「」」」 「」」」 <th」」< th=""> 「」」」 「」」」</th」」<>	<u>計数(n)</u> 2 11 2 8 30 14 26 3 0 30 30 30 30 30 <u>30</u> 30 <u>30</u> 30 4 1 4	$\begin{array}{c} \hline 0-20m & $$ $$ $$ $$ $$ $$ $$ $$ $$ $$ $$ $$ $$	計数(m) 6 1 23 2 30 4 3 30 30 30 1 4	$\begin{array}{c} 20-40m \\ \hline \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \$
ビーリッシンコ 2) 2014夏 採集水深 種名 ヤマトヒゲナガケンミジンコ科 ケンミジンコ科(コペポーダ) オナガケンミジンコ ケンミジンコ属(コペポーダ) キクロブス科 ケンミジンコ属(コペポーダ) ウンミジンコ属(コペポーダ) ウンミジンコ属(コペポーダ) カイアシ亜綱(ノーブリウス) オナガミジンコ オナガミジンコ カブトミジンコ ホナボミジンコ ガブトミジンコ カブトミジンコ ウンミジンコ カブトミジンコ カブトミジンコ (幼体) ジカウミジンコ シカウミジンコ ケマトビゲナガケンミジンコ ケロ 2) 2014夏 採集水深 種名 ヤマトヒゲナガケンミジンコ ケンミジンコス オナガマンジンコ ケンミジンコス オナガマンジンコ ケンミジンコス ケンミジンコス ケンミジンコス ケンミジンコ ケンミジンコス ケンミジンコス ケンミジンコス ケンミジンコス ケンミジンコス ケンミジンコス ケンミジン	<u>計数(n)</u> 2 11 2 8 30 14 26 3 30 30 30 30 30 30 30 30 30 30 30 30 3	$\begin{array}{c} \hline 0-20m & $k \mbox{\pounds}(mm)$\\\hline $k \mbox{\pounds}(mm)$\\1.21 \pm 0.16$\\0.55 \pm 0.14$\\\hline 1.02 \pm 0.12$\\0.48 \pm 0.13$\\\hline 0.48 \pm 0.13$\\0.16 \pm 0.03$\\0.88 \pm 0.05^{c.g.h}$\\0.55 \pm 0.10$\\1.04 \pm 0.05$\\0.66 \pm 0.15^{c}$\\0.38 \pm 0.04$\\0.25 \pm 0.02$\\\hline 3.94 \pm 1.41^{a.c.d.a.f.g.h}$\\\hline $k \mbox{\pounds}(mm)$\\\hline 0.59 \pm 0.13$\\1.43$\\1.13 \pm 0.04$\\0.86 \pm 0.06$\\1.04 \pm 0.02$\\\hline \end{tabular}$	計数(n) 6 1 23 2 30 4 3 30 4 30 1 2 30 1 4	$\begin{array}{c} 20-40m \\ \hline \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \$
ビーリッシンコ 2) 2014夏 採集水深 種名 ヤマトヒゲナガケンミジンコギレ(コペポーダ) オナガケンミジンコス ケンジジンコス ケンミジンコ属(コペポーダ) キクロブス料 ケンミジンコ属(コペポーダ) ウンミジンコ属 オクロブス科(ロペポーダ) ウンミジンコ属 リコミジンコ目(コペポーダ) カイアシ亜綱(ノーブリウス) オナガミジンコ属 オナガミジンコ カブトミジンコ カブトミジンコ ガブトミジンコ シカウミジンコ ジカウミジンコ シカウミジンコ ビゲナガケンミジンコ オナガアンミジンコ オナガトシジンコ オナガトジシンコ ケンミジンコ オナガアンミジンコ ケンミジンコ オナガアンミジンコ ケンミジンコ オナガアンミジンコ ケンミジンコ オナガアシミジンコ ケンミジンコ ケンミジンコ属 キクロブス科 ケンミジンコ属 ケンミジンコ属 ロペポーグ)	<u>計数(n)</u> 2 11 2 8 30 14 26 3 30 30 30 30 30 30 <u>30</u> 30 <u>30</u> 30 30 30 30 30 30 30 30 30 30 30 30 30	$\begin{array}{c} \hline 0-20m & $k \mbox{\pounds}(mm)$\\ \hline \mbox{\pounds}(mm)$\\ 1.21 \pm 0.16$\\ 0.55 \pm 0.14$\\ \hline \mbox{1.0} \\ 1.02 \pm 0.12$\\ 0.48 \pm 0.13$\\ \hline \mbox{0.13}$\\ 0.16 \pm 0.03$\\ 0.88 \pm 0.05^{c.g.h}$\\ 0.55 \pm 0.10$\\ 1.04 \pm 0.05$\\ 0.38 \pm 0.04$\\ 0.25 \pm 0.02$\\ \hline \mbox{3.0} \\ 3.94 \pm 1.41^{a.c.d.a.f.g.h}$\\ \hline \mbox{0.13}$\\ 1.43$\\ 1.13 \pm 0.04$\\ 0.86 \pm 0.06$\\ 1.04 \pm 0.08$\\ 0.41 \pm 0.14^{c.g.h}$\\ \hline \end{array}$	計数(n) 6 1 23 30 4 3 30 4 30 1 2 30 1 4	$\begin{array}{c} 20-40m \\ \hline \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \$
ビーリッシンコ 2) 2014夏 採集水深 種名 ヤマトビゲナガケンミジンコ科 ケンジンコス オナガケンミジンコス ケンミジンコスス科 インスジンコス ケンミジンコスス科 インスジンコス ケンミジンコスス科 インスジンコス ケンミジンコスス科 インスジンコス ケンミジンコス科 インスジンコス ケンミジンコス科 インスジンコス カナトジンコス科 ケンミジンコス カナトジンコス オナガジンジンコス カブトミジンコ (カブトミジンコ カブトミジンコ(幼体) 「 ゾウミジンコ(幼体) シカクミジンコ ケンミジンコ(幼体) 「 ジカウミジンコス ケウミジンコス ケンミジンコス オナガをジンコス イロ 種名 ビゲナガケンミジンコス ケンミジンコス ケンミジンコス ケンミジンコス ケンミジンコス ケンミジンコス ケンミジンコス ケンミジンコス ケンミジンコス ケンミジンコス ケンミジンコス キクロブスス科 ケンラジンコス目 (コペボーダ) キクロブス和(コペボーダ) ソコミジンコ目 (コペボーダ) ショミジュコ目 (コペボーダ)	<u>計数(n)</u> 2 11 2 8 30 14 26 3 30 30 30 30 30 30 30 30 30 30 30 30 3	$\begin{array}{c} \hline 0-20m & $k \mbox{$k$}(mm)$\\ \hline 1.21 \pm 0.16$\\ 0.55 \pm 0.14$\\ \hline 1.02 \pm 0.12$\\ 0.48 \pm 0.13$\\ \hline 0.16 \pm 0.03$\\ 0.88 \pm 0.05^{\circ.g.h}$\\ 0.55 \pm 0.10$\\ 1.04 \pm 0.05$\\ 0.66 \pm 0.15^{\circ}$\\ 0.38 \pm 0.04$\\ 0.25 \pm 0.02$\\ \hline 3.94 \pm 1.41^{a.c.d.o.f.g.h}$\\ \hline 0.59 \pm 0.13$\\ 1.13 \pm 0.04$\\ 0.86 \pm 0.06$\\ 1.04 \pm 0.08$\\ 0.49 \pm 0.14^{\circ.g.h}$\\ \hline \end{array}$	計数(n) 6 1 23 30 4 3 30 4 30 1 2 30 1 4	$\begin{array}{c} 20-40m \\ \hline \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \$
ビーリッシュー 2) 2014夏 採集水深 種名 ヤマトヒゲナガケンミジンコ科(コペポーダ) オナガケンミジンコ属 ケンミジンコ属(コペポーダ) キクロブス科(コペポーダ) ウンニジンコ国(コペポーダ) カイアシ亜綱(ノーブリウス) [°] オナガミジンコ ^G オナガミジンコ ^G カプトミジンコ カプトミジンコ(幼体) ^f ゾウミジンコ(幼体) ^f ジカクミジンコ(幼体) ^f シカクミジンコ(幼体) ^f シカクミジンコ(幼体) ^f マロブス科(コペポーダ) オナガケンミジンコス ロー 2) 2014夏 採集水深 種名 セゲナガケンミジンコ レブトジンゴ属 ママトヒゲナガケンミジンコ キクロブス科 ケンミジンコ属 キクロブス科 ケンミジンコス科(コペポーダ) ^b ソコミジンコ国(コペポーダ) カイアシ亜綱(ノーブリウス) [°]	<u>計数(n)</u> 2 11 2 8 30 14 26 3 30 30 30 30 30 30 30 30 30 30 30 30 3	$\begin{array}{c} \hline 0-20m & $k \mbox{$k \mbox{(mm)}$} \\ \hline (k \mbox{$(mm)$}) \\ 1.21 \pm 0.16 \\ 0.55 \pm 0.14 \\ \hline 1.02 \pm 0.12 \\ 0.48 \pm 0.13 \\ 0.16 \pm 0.03 \\ 0.88 \pm 0.05^{\circ.g.h} \\ 0.55 \pm 0.10 \\ 1.04 \pm 0.05 \\ 0.66 \pm 0.15^{\circ} \\ 0.38 \pm 0.04 \\ 0.25 \pm 0.02 \\ \hline 3.94 \pm 1.41^{a.c.de.f.g.h} \\ \hline 0.25 \pm 0.02 \\ \hline 3.94 \pm 1.41^{a.c.de.f.g.h} \\ \hline 0.59 \pm 0.13 \\ 1.43 \\ 1.13 \pm 0.04 \\ 0.86 \pm 0.06 \\ 1.04 \pm 0.08 \\ 0.49 \pm 0.14^{\circ.g.h} \\ \hline 0.16 \pm 0.04 \\ \hline \end{array}$	計数(n) 6 1 23 2 30 4 3 30 4 30 30 30 1 4	$\begin{array}{c} 20-40m \\ \hline \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \$
ビーリッシュー 2) 2014夏 採集水深 種 ヤマトビゲナガケンミジンコ ⁴ ケンミジンコ科(コペポーダ) オナガケンミジンコ ケンミジンコ属 ケンミジンコ属(コペポーダ) キクロブス科 ケンミジンコ属(コペポーダ) カワブス科(コペポーダ) カマクロブス科(コペポーダ) カフトジジンコ オナガミジンコ (コペポーダ) カイアシ亜綱(ノーブリウス) ^c オナガミジンコ オナガミジンコ (カプトミジンコ (カプトミジンコ(幼体)) ^f ソウミジンコ(幼体) ^f ソウミジンコ (カウトミジンコ(幼体) ^f ソウミジンコ(幼体) ^f シカクミジンコ (コペポーダ) ノロ 20 20 2014夏 種 名 ヤマトビゲナガケンミジンコ (コペポーダ) キクロブス科 (コペポーダ) ケンミジンコ属 (コペポーダ) キクロブス科 (コペポーダ) ソコミジンコ国 (コペポーダ) シロブスス科 (コペポーダ) カイアシ 亜綱(ノーブリウス) ^c オナガミジンコ	<u>計数(n)</u> 2 11 2 8 30 14 26 3 30 30 30 30 30 30 30 30 30 30 30 30 3	$\begin{array}{c} \hline 0-20m & $(k \mbox{$(mm)$})$\\ \hline 1.21 \pm 0.16 & $(0.55 \pm 0.14$)$\\ \hline 1.02 \pm 0.12 & $(0.48 \pm 0.13$)$\\ \hline 0.16 \pm 0.03 & $(0.88 \pm 0.05^{\circ.g.h}$)$\\ \hline 0.55 \pm 0.10 & $(1.04 \pm 0.05$)$\\ \hline 0.66 \pm 0.15^{\circ}$\\ \hline 0.38 \pm 0.04 & $(0.25 \pm 0.02$)$\\ \hline 0.25 \pm 0.02 & $(3.94 \pm 1.41^{a.c.de.f.g.h}$)$\\ \hline 0.59 \pm 0.13 & $(1.43$)$\\ \hline 1.13 \pm 0.04 & $(0.86 \pm 0.06$)$\\ \hline 1.04 \pm 0.08 & $(0.49 \pm 0.14^{\circ.g.h}$)$\\ \hline 0.16 \pm 0.04 & $(0.96 \pm 0.01$)$\\ \hline \end{array}$	計数(n) 6 1 23 2 30 4 3 30 4 30 30 30 30 1 4	$\begin{array}{c} 20-40m \\ \hline \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \$
ビーリッシュー 2) 2014夏 採集水深 種本 ヤマトビゲナガケンミジンコ ⁴ ケンミジンコ科(コペポーダ) オナガケンミジンコ ケンミジンコ属(コペポーダ) ケンミジンコ属(コペポーダ) キクロブス科(コペポーダ) ケンミジンコ属(コペポーダ) カイアシジンコ オナガミジンコ カイアシ亜綱(ノーブリウス) ⁰ オナガミジンコ ⁴ オナガミジンコ オナガミジンコ ⁴ ケンミジンコ国(コペポーダ) カブトミジンコ カブトミジンコ カブトミジンコ オナガミジンコ ⁵ ソウミジンコ(幼体) ¹ ゾウミジンコ リウミジンコ(幼体) ¹ 2) 2014夏 採集水深 オフ ケンミジンコス国 ウロジンコ属 キクロブス科 ケンミジンコス国 キクロブス科 ケンミジンコ国(コペポーダ) カイアシ亜綱(ノーブリウス) ² カイアシ亜綱(ノーブリウス) ² オナガミジンコ ⁴ オナガミジンコ オナガミジンコ オナガミジンコ属 ²	<u>計数(n)</u> 2 11 2 8 30 14 26 3 30 30 30 30 30 30 30 30 30 30 30 30 3	$\begin{array}{c} \hline 0-20m & $(k \mbox{$(mm)$})$\\ \hline 1.21 \pm 0.16 & $(0.55 \pm 0.14$)$\\ \hline 1.02 \pm 0.12 & $(0.48 \pm 0.13$)$\\ \hline 0.55 \pm 0.14 & $(0.55 \pm 0.10$)$\\ \hline 1.04 \pm 0.05 & $(0.66 \pm 0.15^{\circ}$)$\\ \hline 0.55 \pm 0.10 & $(1.04 \pm 0.05$)$\\ \hline 0.66 \pm 0.15^{\circ}$\\ \hline 0.38 \pm 0.04 & $(0.25 \pm 0.02$)$\\ \hline \hline 0.59 \pm 0.13 & $(1.43$)$\\ \hline 1.13 \pm 0.04 & $(0.86 \pm 0.06$)$\\ \hline 1.04 \pm 0.08 & $(0.49 \pm 0.14^{\circ.gh}$)$\\ \hline 0.16 \pm 0.04 & $(0.96 \pm 0.01$)$\\ \hline 0.55 \pm 0.02 & $(0.25 \pm 0.02$)$\\ \hline \end{array}$	計数(n) 6 1 23 2 30 4 3 30 4 30 30 30 30 1 4	$\begin{array}{c} 20-40m \\ \hline \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \$
ビーリッシュー 2) 2014夏 採集水深 種本 ヤマトビゲナガケンミジンコ ³ トゲナガケンミジンコ科(コペポーダ) オナガケンミジンコ属 ケンミジンコ属(コペポーダ) キクロブス科(コペポーダ) ケンミジンコ属(コペポーダ) カイアシジンコ ケンミジンコ属(コペポーダ) カイアシジンコ ケンミジンコ属(ノーブリウス) ^c オナガミジンコ カイアシ亜綿(ノーブリウス) ^c オナガミジンコ カブトミジンコ カプトミジンコ カブトミジンコ(幼体) ^f ゾウミジンコ(幼体) ^f ゾウミジンコ(幼体) ^f シカグミジンコ カブトミジンコ(幼体) ^f ナウミジンコ(幼体) ^f ソウミジンコ(幼体) ^f ナウミジンコ カブトミジンコ(幼体) ^f ナウミジンコ ウンミジンコス(幼体) ^f ナウミジンコス(幼体) ^f ノロ ノロ ノロ 2) 2014夏 採集水深 キクロブス和(コペポーダ) オナガデジジンコス ケンミジンコスス和(コペポーダ) オナガミジンコス和(コペポーダ) ウンミジンコ属(コペポーダ) カイアシ亜綱(ノーブリウス) ^c オナガミジンコ属 オナガミジンコ属 ^c オナガミジンコ属 オナガミジンコ属 ^c オブトミジンコ属 カブトミジンコ属 ^c	<u>計数(n)</u> 2 11 2 8 30 14 26 3 30 30 30 30 30 30 30 30 30 30 30 30 3	$\begin{array}{c} \hline 0-20m & $k \mbox{$k$}(mm)$ \\ \hline 1.21 \pm 0.16 & 0.55 ± 0.14 \\ \hline 1.02 \pm 0.12 & 0.14 \\ \hline 1.02 \pm 0.12 & 0.14 \\ \hline 1.02 \pm 0.12 & 0.16 ± 0.03 \\ \hline 0.55 \pm 0.10 & 1.01 \\ \hline 1.04 \pm 0.05 & $0.66 \pm 0.15^{\circ}$ \\ \hline 0.38 \pm 0.04 & 0.25 ± 0.02 \\ \hline 0.38 \pm 0.04 & 0.25 ± 0.02 \\ \hline 3.94 \pm 1.41^{a.o.d.e.f.g.h}$ \\ \hline 0.25 \pm 0.02 & 0.38 ± 0.04 \\ \hline 0.25 \pm 0.02 & 0.31 \\ \hline 1.13 \pm 0.04$ \\ \hline 0.86 \pm 0.06 & 1.04 ± 0.08 \\ \hline 1.04 \pm 0.08 & $0.49 \pm 0.14^{\circ.g.h}$ \\ \hline 0.16 \pm 0.04 & 0.96 ± 0.01 \\ \hline 0.55 \pm 0.02 & 1.18 \\ \hline 1.18 & 0.04 & 0.55 \\ \hline 0.16 \pm 0.04 & 0.55 \\ \hline 0.16$	計数(n) 6 1 23 2 30 4 3 30 4 30 30 30 30 1 4	$\begin{array}{c} 20-40m \\ \hline \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \$
ビーリッシュー 2) 2014夏 採集水深 種 ヤマトビゲナガケンミジンコ ³ トゲナガケンミジンコ科(コペポーダ) オナガケンミジンコ属 ケンミジンコ属(コペポーダ) キクロブス科(コペポーダ) ケンミジンコ属(コペポーダ) カイアシミジンコ ケンミジンコ属(コペポーダ) カイアシジンコ ケンミジンコ属(ノーブリウス) ^c オナガミジンコ カナトジシンコ(幼体) ^f ゾウミジンコ ガナトミジンコ(幼体) ^f ゾウミジンコ ^a ソウミジンコ(幼体) ^f ジウミジンコ(幼体) ^f ソウミジンコ(幼体) ^f ソウミジンコ カブトミジンコ(幼体) ^f ナウンミジンコ オナガシンジンコ(コペポーダ) オナガシンジンコ クロ ノア 2) 2014夏 様名 セマトビゲナガケンミジンコ ケンミジンコス ケンミジンコス ケンミジンコス ケンミジンコス ケンミジンコス ケンミジンコス ケンミジンコス オナガランジンコス カブトシ 車線(ノーブリウス) ^c オナガミジンコス オナガミジンコ カブトミジンコ カブトミジンコ オナガミジンコス	<u>計数(n)</u> 2 11 2 8 30 14 26 3 30 30 30 30 30 30 30 30 30 30 30 30 3	$\begin{array}{c} \hline 0-20m & $(k \mbox{$(mm)$})$\\ \hline (k \mbox{(mm)})$\\ \hline 1.21 \pm 0.16 & 0.55 ± 0.14\\ \hline 1.02 \pm 0.12 & 0.14\\ \hline 1.02 \pm 0.12 & $0.38 \pm 0.05^{\circ}gh$\\ \hline 0.55 \pm 0.10 & 1.04 ± 0.05\\ \hline 0.66 \pm 0.15^{\circ} & 0.38 ± 0.04\\ \hline 0.25 \pm 0.02 & 0.38 ± 0.04\\ \hline 0.59 \pm 0.13 & 1.43\\ \hline 1.13 \pm 0.04$\\ \hline 0.86 \pm 0.06$\\ \hline 1.04 \pm 0.08$\\ \hline 0.49 \pm 0.14^{\circ}gh$\\ \hline 0.16 \pm 0.04$\\ \hline 0.65 \pm 0.02 & 1.18\\ \hline 0.62 \pm 0.14^{\circ}gh$\\ \hline 0.64 \pm 0.26^{\circ}h$\\ \hline \end{array}$	計数(n) 6 1 23 2 30 4 3 30 4 30 30 30 30 1 4	$\begin{array}{c} 20-40m \\ \hline \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \$
ビーリッシュー 2) 2014夏 採集水深 種名 ヤマトビゲナガケンミジンコ ³ ケンミジンコ科(コペポーダ) オナガケンミジンコ ケンミジンコ属(コペポーダ) ケンミジンコ属(コペポーダ) キクロブス科(コペポーダ) ケンミジンコ属(コペポーダ) オナガジンコ ケンミジンコ属(コペポーダ) カイアシジンコ オケロブス科(コペポーダ) オナガジンコ カナトジンコ オナガジンコ カナトジンコ オナガジンコ カブトミジンコ 幼休) [†] ゾウミジンコ(幼休) [†] ゾウミジンコ(幼休) [†] ソウミジンコ(幼休) [†] ソウミジンコ(幼休) [†] ソウミジンコ(幼休) [†] ナガゲンジンコ ケンミジンコス オナガデンジンコ [*] ケンミジンコス オナガマンジンコ ケンミジンコス オナガマンジンコ ケンミジンコス ケンミジンコス ケンミジンコス オナガミジンコ ケンミジンコス オナガミジンコ カブトミジンコ オナガミジンコ カブトミジンコ オナガミジンコ カブトミジンコ オナガミジンコ オナガミジンコ オナガミジンコ オナガミジンコ オナガミジンコ オナガミジンコ オナボミジンコ オナガミジンコ オナガミジンコ	<u>計数(n)</u> 2 11 2 8 30 14 26 3 30 30 30 30 30 30 30 30 6 1 4 3 30 30 2 5 1 1 6 30 30 2 5 1 1 6 30 30 30 30 30 30 30 30 30 30 30 30 30	$\begin{array}{c} \hline 0-20m & (k \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ $	計数(n) 6 1 23 2 30 4 3 30 4 30 30 30 30 1 4	$\begin{array}{c} 20-40m \\ \hline \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \$
ビーリッシュー 2) 2014夏 採集水深 種名 ヤマトビゲナガケンミジンコ科(コペポーダ) オナガケンミジンコ属(コペポーダ) キクロブス科(コペポーダ) キクロブス科(コペポーダ) カイアシ亜綱(ノーブリウス) ^c オナガミジンコ オナガミジンコ カプトミジンコ カプトミジンコ カプトミジンコ (加) 2) 2014夏 採集水深 セクロブス科(コペポーダ) オナガミジンコ (コペポーダ) カイアシ亜綱(ノーブリウス) ^c オナガミジンコ (加) オナガミジンコ (加) 2) 2014夏 採集水深 セマトビゲナガケンミジンコ (加) アウェジンコ (加) 2) 2014夏 採集水深 日名 ヤマトビゲナガケンミジンコ (加) ケンミジンコ (コペポーダ) オナガデンシジンコ (コペポーダ) ケンミジンコ (コペポーダ) キクロブス科 (コペポーダ) ケンミジンコ (コペポーダ) カイアシ亜綱(ノーブリウス) ^{cl} オナガミジンコ (加) オナガミジンコ (加) オナガミジンコ (加) ガブトミジンコ (加) オナガミジンコ (加)	<u>計数(n)</u> 2 11 2 8 30 14 26 3 30 30 30 30 30 30 30 30 30 30 30 30 2 5 1 1 6 1 4 3 30 30 30 30 30 30 30 30 30 30 30 30 3	$\begin{array}{c} \hline 0-20m & $(k \mbox{$(mm)$})$\\ \hline (k \mbox{(mm)})$\\ \hline 1.21 \pm 0.16 & 0.55 ± 0.14\\ \hline 1.02 \pm 0.12 & 0.14\\ \hline 1.02 \pm 0.12 & 0.35 ± 0.14\\ \hline 1.04 \pm 0.05 & $0.66 \pm 0.15^{\circ}$\\ \hline 0.55 \pm 0.10 & 1.04 ± 0.05\\ \hline 0.66 \pm 0.15^{\circ}$\\ \hline 0.38 \pm 0.04 & 0.25 ± 0.02\\ \hline 3.94 \pm 1.41^{a.o.de.fg.h}$\\ \hline 0.25 \pm 0.02 & $3.94 \pm 1.41^{a.o.de.fg.h}$\\ \hline 0.59 \pm 0.13 & 1.43\\ \hline 1.13 \pm 0.04$\\ \hline 0.86 \pm 0.06$\\ \hline 1.04 \pm 0.08 & $0.49 \pm 0.14^{\circ.g.h}$\\ \hline 0.16 \pm 0.04$\\ \hline 0.96 \pm 0.01$\\ \hline 0.55 \pm 0.02$\\ \hline 1.18 & $0.62 \pm 0.14^{b.o.g.h}$\\ \hline 0.25 \pm 0.03^{\circ.h}$\\ \hline 0.25 \pm 0.03$	計数(n) 6 1 23 2 30 4 3 30 4 30 30 30 30 1 4	$\begin{array}{c} 20-40m \\ \hline \mbox{k} \\ \mbox{k} \\ 0.50 \pm 0.07 \\ \hline \mbox{0.85} \\ 0.41 \pm 0.01 \\ 0.18 \pm 0.04 \\ 0.88 \pm 0.03 \\ 0.55 \pm 0.14 \\ 1.21 \\ 0.62 \pm 0.16 \\ 0.37 \pm 0.04^{c,h} \\ 0.24 \pm 0.04 \\ 0.24 \\ 3.54 \pm 1.18 \\ \end{array}$

種名欄の符号を体長欄に付した種(n>10)は、各採集層内においてその符号種より体長が大 (Tukey-Kramer法, p<0.01)

(3) 資源推定

びくのぞき調査で得られた全長組成及び採集標本の 年齢査定結果から、年齢組成を算出した(表5).年齢 組成のうち単調減少がみられたのは2012年が1才から、 2013年は2才からであったため、それらよりも高齢魚 についての減少率から全死亡係数Zを推定した.標本の クニマス比率は2012年が7.14%(17/238個体),2013 年は14.0%(21/150個体)であった.

以上から,10月1日時点のクニマス資源量は2012年が 5,397-6,079-7,501匹,2013年が4,979-5,459-6,384匹(そ れぞれ寿命6才-5才-4才の場合)と推定された(表6).

表5 ヒメマス・クニマスの年齢-体長組成

A) 2012年								
びくのぞき調査	_ 全長(cm)	5~10	10~15	15~20	20~25	25~30	30~35	計
-	頻度	0	95	835	150	10	2	1,090
Age-Length key	年齢							
<u>Age Lenger Rey</u>	0		0.050					
	1		0.950	0.727				
	2			0.242	0.778			
	3			0.030	0.222	1		
年齡組成	年齢							計
1 101110/04	0		5					5
	1		90	607				698
	2			202	117			319
	3			25	33	10		69
	tota		95	835	150	10		1,090
<u>B) 2013年</u>								
ひくのそき調査	<u>全長(cm)</u>	5~10	10~15	15~20	20~25	25~30	30~35	計
	頻度	24	63	26	327	5/	2	499
Age-Length key	年齢							
	0	1.00	0.74					
	1		0.26	0.22	0.01			
	2			0.67	0.78	0.25		
	3			0.11	0.13	0.38		
	4				0.07	0.31	0.50	
	5					0.06	0.50	
年齡組成	年齢							計
	0	24	46					70
	1		17	6	5			27
	2			17	255	14		286
	3			3	43	21		68
					0.4	10	4	12
	4				Z4	10		40
	4 5				24	4	1	43
	4 5 total	24	63	26	327	4 57	1 2	43 5 499

表6 クニマスの推定資源数

A) 2012	年		-	-
パラメー	·9	寿命4才	寿命5才	寿命6才
Z	全死亡係数	1.159	1.159	1.159
М	自然死亡係数	0.625	0.500	0.417
F	漁獲死亡係数	0.534	0.659	0.743
С	総釣獲尾数	48,419	48,419	48,419
C•Z/F	ヒメマス・クニマス資源量(尾)	105,051	85,136	75,583
クニマス	の比率	0.0714	0.0714	0.0714
<u>クニマス</u>	.資源量(尾)	7,501	6,079	5,397
B) 2013	年			
パラメー	·9	寿命4才	寿命5才	寿命6才
Z	全死亡係数	1.363	1.363	1.363
М	自然死亡係数	0.625	0.500	0.417
F	漁獲死亡係数	0.738	0.863	0.946
С	総釣獲尾数	24,691	24,691	24,691
C•Z/F	ヒメマス・クニマス資源量(尾)	45,601	38,996	35,542
クニマス	の比率	0.140	0.140	0.140
<u>クニマス</u>	.資源量(尾)	6,384	5,459	4,979

(4) 成長

成長曲線及び全長-体重関係の推定式を図11,12に示す. 2012秋: クニマスlt = 45.6[1-e^{-0.078} (+5.36)], y=0.0075x^{3.01}, ヒメマスlt = 35.6[1-e^{-0.142} (+3.35)], y=0.0034x^{3.2893}.

また、耳石縁辺部が不透明帯のクニマス個体割合は夏 に最大となり、秋から翌春にかけて低下していた (図13).

(5) 食性

胃内容物分析に供した標本の充満度に差は認められ ず,肥満度について2014春のヒメマスは2013秋のクニ マス,2014夏のクニマスより低かった(表7).食性分 析にあたり,次の区分により標本の体サイズを大別した. 稚魚:20g未満(0才の理論体重未満),幼魚:20-70g(未 成熟期として0才以上2才の理論体重以下),成魚:70g より大(2才の理論体重より大).標本体サイズを採集層 別にみると,深層はヒメマス稚魚(クニマス稚魚は全層 で採集されていない)が多く,表層から中層では両種の 成魚が多かった.成魚の採集数が少ない2014春には, ヒメマス稚魚は表層から深層まで採集された(図14).

胃内容物として出現した生物種には,季節や体サイズ, 採集層による相違がみられた.出現種の重量組成比を図 15に,餌重要度指数(IRI)を表8に示す.

	年齢	標本数	標準体長(cm)	体重(g)	肥満度	充満度	空胃率(%)
	3	10	20.2 ± 1.9	110.0 ± 24.9	13.1 ± 0.9	0.3 ± 0.4	
2013秋	4	8	20.8±1.2	127.4 ± 22.5	14.1 ± 0.6	0.1 ± 0.2	
	5	1	24.5	215.4	14.6	0.1	
	計	19	20.7 ± 1.8	122.8 ± 33.0	13.6 ± 1.0^{8}	0.2 ± 0.3	14.3
2014春	4	2	20.9±0.8	116.3 ± 0.3	12.8±1.5	0.2 ± 0.1	0
	2	1	18.4	77.6	12.5	5.1	
	3	4	21.3 ± 1.2	138.5 ± 30.1	14.2±0.9	0.4 ± 0.7	
2014夏	4	2	22.8±4.0	165.5 ± 79.1	13.5 ± 0.5	0.2 ± 0.2	
	5	2	26.5±2.1	277.1 ± 50.0	14.8 ± 0.9	0.2 ± 0.2	
	計	9	26.5 ± 2.1	277.1 ± 50.0	14.8±0.9 ^b	0.2 ± 0.2	10.0
ヒメマス							
	年齢	標本数	標準体長(cm)	体重(g)	肥満度	充満度	空胃率(%)
	0	6	7.5 ± 0.4	5.3 ± 0.6	12.8 ± 1.3	0.6 ± 0.5	
2013秋	1	1	10.4	12	10.5	0.9	
	2	4	17.0 ± 2.0	64.8 ± 27.4	12.7 ± 0.8	0.3 ± 0.1	
	計	11	11.2±4.8	27.5 ± 33.2	12.5 ± 1.2	0.5 ± 0.4	6.2
	1	14	9.1 ± 1.3	8.8 ± 4.5	10.9 ± 1.2	0.5 ± 0.7	
2014春	2	8	13.2 ± 3.5	33.1 ± 26.4	12.1 ± 1.1	0.6 ± 0.5	
	3	6	17.3 ± 2.9	69.4 ± 37.9	12.6 ± 1.5	0.8 ± 1.0	
	計	28	12.1±4.1	28.7 ± 32.2	$11.6 \pm 1.4^{a,b}$	0.6 ± 0.7	7.4
	1	4	9.6±1.0	11.2 ± 3.1	12.3±0.3	1.1 ± 0.8	
2014夏	2	2	13.8±3.9	36.6 ± 28.4	12.5 ± 0.1	1.2 ± 0.6	
	3	3	19.4±1.4	100.9 ± 30.1	13.5 ± 1.0	0.7±0.2	
	計	9	13.8±4.8	46.7 ± 45.7	12.8±0.8	1.0 ± 0.6	0
肥満度·体重	/標準体長3;	×1000. 充法	ing · 胃内容物重	量/体重×100.	空胃率·空胃個体	約/採集個体数	5

表7 胃内容物分析標本の概要

肥滿度:体重/標準体長³×1000、充満度:胃内容物重量/体重×100、空胃率:空胃個体数/採集個体数 同符号間に有意差(Tukey-Kramer法、p<0.05)

図15 胃内容物重量組成比(2013秋, 2014春, 夏)

動物プランクトンが豊富であった2013秋は、両種の成 魚及び幼魚ではカブトミジンコの重量組成比とIRIが圧 倒的に高く、次いでノロ、クニマス幼魚ではキクロプス 科(種まで同定されたものはAcanthocyclops vernalus)が 高かった. このとき深層で多く採集されたヒメマス稚魚 はキクロプス科,ユスリカ科 (Chironomidae) 蛹の順で, 採餌していた動物プランクトンは採集層の組成(図10)を 反映していた.動物プランクトンが少なかった2014春 は様々な生物を採餌しており、両種の成魚ではワカサギ (Hypomesus nipponensis)、ユスリカ蛹の重量組成比及び IRIが高かった. ヒメマス幼魚ではユスリカ蛹の重量組 成比とIRIが高く、チャタテ類 (Psocoptera) など昆虫の IRIも比較的高かった. ヒメマス稚魚ではキクロプス科, ゾウミジンコ、ミズムシ属 (Asellus spp.), ユスリカ蛹の 順にIRIが高かったが重量組成比ではプランクトンは少 なかった. 2014夏の両種成魚ではワカサギの重量組成比 及びIRIが高く、ヒメマス幼魚はノロ、ヒメマス稚魚は ノロ、カブトミジンコ、ミズムシの順で、ヒメマス幼魚

及び稚魚では動物プランクトンの重量組成比とIRIが比較的高かった。

表8 クニマス・ヒメマスの餌重要度指数(IRI)

2013秋										
成角(\>70g)			ウニマス(n=	17)				ヒメマス(n=	1)	
Bolle (7 Fog.)	%F	5N	%W	IRI	SIRI	%F	%N	%W	IRI	%IRI
カプトミジンコ	100	85.5	70.7	14751	89.4	100	93.4	68.7	16214	81.1
/n	83.3	4.1	8.5	991	6.0	100	6.5	31.3	3781	18.9
ワカサキ	16.7	3.0	13.9	681	4.1	0	0	0	0	0
キクロフス科	5.6	5.8	5.7	61	0.4	0	0	0	0	0
ミジンコ属	5.6	1.5	1.0	13	0.1	0	0	0	0	0
ヤマトヒゲナガケンミジンコ	27.8	0.04	0	1	0.01	0	0	0	0	0
Acanthocyclops vernalus	5.6	0.04	0.2	1	0.01	0	0	0	0	0
ノコギリケンミジンコ	0	0	0	0	0	100	0.1	0	6	0.03
			h====(-	-43					a)	
幼魚(20-70g) ·	0 E	EM	2_ <x(n=< td=""><td>10</td><td>©1D1</td><td>8 E</td><td>EM</td><td>*W</td><td>3)</td><td>6 1DT</td></x(n=<>	10	©1D1	8 E	EM	*W	3)	6 1DT
カプトミジンコ	100	01.0	84.0	17802	89.5	100	97.8	01.5	18925	94.6
/0	100	51	16.0	2108	10.5	100	22	85	1075	54
	100	0.1	10.0	2100	10.0	100		0.0	1070	
租份(/20-)			ヒメマス(n=	6)						
推加((20g)	%F	5N	%W	IRI	%IRI	_				
キクロプス科	100	50.0	20.7	7072	41.6					
Acanthocyclops vernalus	100	26.5	18.8	4528	26.6					
ユスリカ科蛹	85.7	5.1	41.5	3986	23.4					
ミズムシ属	42.9	1.9	18.5	872	5.1					
ミジンコ属	42.9	10.5	0.3	465	2.7					
カプトミジンコ	14.3	5.2	0.2	78	0.5					
ゾウミジンコ	14.3	0.5	0	7	0.04					
オナガケンミジンコ	42.9	0.1	0	3	0.02					
ソコミジンコ目	14.3	0.1	0	2	0.01					
シカクミジンコ属	14.3	0.1	0	2	0.01					
ノコギリケンミジンコ	14.3	0.03	0	0.5	0.003					
2014春			h/					/ == . /	0)	
成魚(>70g) ·	0.0	1 KI	クニマス(n=	2)	6101	07	p.o.	ビメマス(n=	3)	6101
D+++*	5F 0	5N	3W	1KI IKI	2114	100	3N 2/ 0	3W#: 0 C Q	10266	58 0
シガザキ	U FO	50.0	50.0	5000	50.0	607	24.9	12.0	10000	20.0
エスリカ件知	50	50.0	50.0	5000	50.0	00./	52./	13.0	4375	28.9
イクロノス科	50	30.0	34.4	3549	35.5	0.0	0.0	0	0	0
ミンンコ風	50	8.5	6.9	//4	1.1	0	0	0	0	0
アイアキクロフス画	50	4.5	8./	659	6.6	0	0	0	0	0
陸生昆虫成虫	0	0	0	0	0	33.3	8.8	1.5	245	1.6
ユスリカ科幼虫	0	0	0	0	0	33.3	8.3	1./	150	1.0
マルミジンコ属	50	0.2	0	9	0.1	0	0	0	0	0
ヒロオミジンコ	50	0.2	0	9	0,1	0	0	0	0	0
			H 177(n-	7)		-				
幼魚(20-70g) ·	\$F	5N	\$W	IRI	SIRI	-				
ユスリカ蛹	100	67.4	48.3	11562	89.2	-				
陸生昆虫成虫	37.5	2.5	21.9	665	51					
ミズミミズ	12.5	14.1	14.2	354	27					
ワカサギ	12.0	0.1	15.5	167	13					
ミジンコ属	12.0	0.1	0.1	110	0.9					
ディアキカロプス属	25.0	2.0	0.1	64	0.5					
11/モンロノス属 キャロプス利	10.5	3.0	0	04	0.5					
	12.0	3.2	U	34	0.3	-				
THE FLORE S		-	ニメマス (n=	9)						
稚魚(<20g) ・	%E	5N	%W	IRI	SIRI					
キクロプス科	88.2	18.0	5.3	831	86.0					
ゾウミジンコ	64.7	34.9	9.9	473	48.9					
ミズムシ属	29.4	20.4	23.8	357	36.9					
ユスリカ科蛹	76.5	15.9	25.3	292	30.2					
ディアキクロプス属	35.3	1.9	5.9	196	20.3					
ミジンコ属	47.1	7.7	4.9	73	7.6					
陸生昆虫成虫	5.9	0.1	22.0	32	3.3					
カプトミジンコ	23.5	0.4	2.9	11	1.2					
ユスリカ科幼虫	11.8	0.4	0	3	0.3					
Acanthocyclors vernalus	5.9	0.3	õ	2	0.2					
		5.0	v	-						
2014夏										
成魚(>70g)			クニマス(n=	8)				ヒメマス(n=	2)	
	%F	5N	%W	IRI	SIRI	%F	5N	%W	IRI	SIRI
リカサキ	50.0	4/.5	62.5	6111	67.7	50	1.0	99.3	6692	44.2
ミンンコ属	37.5	32.2	32.3	2149	23.8	50	43.1	0.4	2891	19,1
カフトミジンコ	37.5	9.5	5.2	656	/.3	100	55.1	0.3	5524	36.5
ディアキクロブス属	12.5	7.5	0	83	0.9	0	0	0	0	0
キクロフス科	12.5	2.5	0	28	0.3	0	0	0	0	U
ヒケナカケンミジンコ科	0	0	0	0	0	50	0.8	0	22	0.1
			- 177(1)		-				
			_^ × A (n=	101	SIRI	-				
幼魚(20-70g)	%F	SN	5W	1131	.948 M					
幼魚(20-70g)	%F 100	%N 96.8	<u>%W</u> 100	19688	98.6					
幼魚(20-70g) ・ ノロ ミジンフ屋	%F 100	%N 96.8 1.6	100 0	19688 117	98.6 0.6					
幼魚 (20-70g) ノロ ミジンコ属 カブトミジンコ	%F 100 100	\$N 96.8 1.6 1.2	5W 100 0	19688 117 117	98.6 0.6					
対魚(20-70g) ノロ ミジンコ属 カプトミジンコ オナガミジンコ	NF 100 100 100	5N 96.8 1.6 1.2 0.4	\$W 100 0 0	19688 117 117 30	98.6 0.6 0.6					
幼魚 (20-70g) ノロ ミジンコ属 カブトミジンコ オナガミジンコ属	NF 100 100 100 100	5N 96.8 1.6 1.2 0.4	55W 100 0 0 0	19688 117 117 39	98.6 0.6 0.6 0.2					
幼魚(20-70g) ノロ ミジンコ属 カブトミジンコ オナガミジンコ属 (1000)	NF 100 100 100 100	\$N 96.8 1.6 1.2 0.4	<u>\$₩</u> 100 0 0 2 ≤メマス (n=	19688 117 117 39	98.6 0.6 0.2	- - -				
<u>幼魚(20-70g)</u> ノロ ミジンコ属 カプトミジンコ オナガミジンコ属 種魚(<20g)	%F 100 100 100 100	SN 96.8 1.6 1.2 0.4 5N		19688 117 117 39 5) IRI	98.6 0.6 0.2 %IRI	-				
対魚 (20-70g) ノロ ミジンコ属 カブトミジンコ オナガミジンコ属 	NF 100 100 100 100 100 %F 80	\$N 96.8 1.6 1.2 0.4 \$N 59.9		19688 117 117 39 5) IRI 9185	98.6 0.6 0.2 %IRI 77.7	- - -				
均魚(20-70g) アロ ミジンコ属 カプトミジンコ オナガミジンコ属 種魚(<20g) パロ カプトミジンコ	NF 100 100 100 100 80 80 80	\$N 96.8 1.6 1.2 0.4 59.9 17.3	<u></u> 100 0 0 <u></u> <u></u> 72.5 7.3	19688 117 117 39 5) IRI 9185 1644	98.6 0.6 0.2 %IRI 77.7 13.9	-				
幼魚(20-70g) ノロ ミジンコ属 カブトミジンコ属 オナガミジンコ属 補魚(<20g) ノロ カブトジンコ属 ・ ク ・ ・ ・ ・ ・ ・ ・ ・ ・ ・ ・ ・ ・	NF 100 100 100 100 80 80 20	\$N 96.8 1.6 1.2 0.4 59.9 17.3 2.9	<u>₩</u> 100 0 0 0 ±メマス (n= <u></u> %W 72.5 7.3 19.6	19688 117 117 39 5) 5) 181 9185 1644 448	98.6 0.6 0.2 	-				
ダ魚 (20-70g) ノロ ミジンコ属 カブトミジンコ オナガミジンコ属 粗魚(<20g) ノロ カプトミジンコ ミズムシ属 キクロプス科	%F 100 100 100 100 80 80 20 20	5N 96.8 1.6 1.2 0.4 59.9 17.3 2.9 15.9	<u> </u>	19688 117 117 39 5) 5) 181 9185 1644 448 326	98.6 0.6 0.2 	-				
対魚(20-70g) パロー ミジンコ属 カブトミジンコ オナガミジンコ属 権魚(<20g) パロー カプトミジンコ属 キクロブス料 ミンンコ属 ミンンコ属	%F 100 100 100 100 80 80 20 20 60	5N 96.8 1.6 1.2 0.4 59.9 17.3 2.9 15.9 2.4	<u> </u>	19688 117 117 39 5) 5) 181 9185 1644 448 326 156	98.6 0.6 0.2 	-				
め魚(20-70g) / ロ ミジンコ属 カプトミジンコ 種魚(<20g) ロ カプトミジンコ ミズムシ属 キクロフス料 ミジンコ属 ソウミジンコ	%F 100 100 100 100 80 80 20 20 60 20	5N 96.8 1.6 1.2 0.4 59.9 17.3 2.9 15.9 2.4 0.4	<u> <u> </u> <u></u></u>	19688 117 117 39 5) 5) 5) 5) 5) 5) 5) 5) 5) 5) 5) 5) 5)	98.6 0.6 0.2 					

主要な餌生物と推定された動物プランクトンの餌選 択係数αを表9に示す.環境中密度の低いノロに対して 両種成魚は高い正の選択性を示し,重量組成比及びIRI の高いカブトミジンコで正の選択性が検出されない個 体もみられた.また,ヤマトヒゲナガケンミジンコに 負の選択性を示すものもみられた.ヒメマス稚魚では Acanthocyclops vernalusなどキクロプス科に正の選択 性を示す個体が多く,ゾウミジンコやヒロオミジンコ (Leydigia leydigii)に正の選択性を示す個体もみられた.

表9 動物プランクトンに対する餌選択係数(α)

	2013秋(n=	=17)	2014春(n	=2)	2014夏(n	=8)
クニマス成魚(>70g) ・	α	+	α	+	α	+
ヤマトヒゲナガケンミジンコ	0.001±0.001	0/5	14			
オナガケンミジンコ	0.05	0/1				
ディアキクロプス属					0.75	1/1
キクロプス科			0.62	1/1	0.25	1/1
カブトミジンコ	0.34 ± 0.35	10/17	0.27	1/1	0.99 ± 0.002	4/4
ゾウミジンコ				., .	0.005	0/1
トロオミジンコ			0.01	0/1		
	0.75 ± 0.26	14/14				
クニマス幼魚(20-70g)・	2013秋(n=1)		2014春(n=0)		2014夏(n=0)	
	α	+	α	+	α	+
Acanthocyclops vernalus	0.01	0/1				
キクロフス科	0.99	1/1				
カフトミジンコ	0.13	1/1				
/□	0.88	1/1				
ヒメマス成魚(>70g) ・	2013秋(n=1)		2014春(n=3)		2014夏(n=2)	
	α	+	α	+	α	+
ヤマトヒゲナガケンミジンコ					0.06	0/1
オナガケンミジンコ	0.004	0/1				
カプトミジンコ	0.10	0/1			0.98 ± 0.03	2/2
ゾウミジンコ					0.001	0/1
/D	0.90	1/1				
トノフフ 幼毎 (20 70~)	2013秋(n=3)		2014春(n=7)		2014夏(n=1)	
ビスマス幼園(20=70g)	α	+	α	+	α	+
ディアキクロプス属			0.53 ± 0.67	1/2		
キクロプス科			0.31 ± 0.29	1/2		
オナガミジンコ					0.26	1/1
カブトミジンコ	0.25 ± 0.03	3/3	0.67 ± 0.26	2/2	0.74	1/1
/□	0.75 ± 0.03	3/3				
	2013秋(n=6)		2014春(n=9)		2014夏(n=5)	
ヒメマス椎魚(<20g) ・	α	+	α	+	α	+
ソコミジンコ目			0.12	0/1		
Acanthocyclops vernalus	0.30 ± 0.15	6/6	0.67	1/1		
オナガケンミジンコ	0.19 ± 0.26	1/3				
ディアキクロプス属			0.37 ± 0.35	4/7	0.17	1/1
キクロプス科	0.57 ± 0.15	6/6	0.49 ± 0.30	8/9	0.93	1/1
カブトミジンコ	0.06 ± 0.09	1/3	0.41 ± 0.30	6/9	0.36 ± 0.45	4/4
ゾウミジンコ	0.001	0/1	0.16 ± 0.14	3/9	0.0001	0/1
シカクミジンコ属	0.13	1/1		-, -,		
トロオミジンコ	1.10	., .	0.09	0/1	0.85 ± 0.16	2/2

+:正の選択性を示した個体数/当該種を採餌していた個体数(差し引きが負の選択性を示した個体数) 調査年の括弧内のnは供試個体数

(6) 生息環境(水温の鉛直分布)

2012年度は水深4-15mの間に水温躍層が形成され, 水温躍層の形成期は水深4-10mの水温がほぼ一定で あった.一方で,2013年度は水深6-15mの間に水温躍 層が形成され,水温躍層の形成後も水深10m以浅で水 温上昇がみられた.2014年度からは水深12mに水温ロ ガーを追加し,水温躍層の形成や消滅,風雨による撹拌 等の様子をさらに詳しく調査した.

2012年5月28日から2015年3月9日までのSt.1及び St.3の水温垂直分布の経日変化を図16,17に示す. St.3 では水温ロガーを設置したロープが切れたため一部欠測 となった.2014年度は4月上旬頃から表層の水温が温 められ水温差が生じ始めた.5月上旬には水深10-15m の間で水温躍層が形成し始めた.7月上旬になると水深 6-15mの間に安定した水温躍層が形成されたが、7月11 日の台風8号の風雨の影響により水深10mまでの水が撹 拌され、一時的に水深8mでは水温が約2℃、水深10m では水温が約1℃上昇した.8月11日に台風11号が接近 した際にも、水深10mまでの水が撹拌したと確認され た. 気温が低下し始めると表層水温も低下し, 9月中旬 には水深8mまでの水温が等温になった。一般的に気温 の低下により表層水温と深層水温の水温差が小さくな り、水温躍層が消滅すると考えられているが、水温躍層 の形成時期に台風等の影響により一度水温が撹拌される と、これをきっかけに水温躍層の消滅を早めていると考 えられた.

(7) 生息環境(水中光量子率の鉛直分布)

2014年1月から7月までの水深別相対光量子率を図 18に示した。

いずれの月も前年同様に、水深20mの相対光量子量 率はほぼ0%となり、水深20m以深では測定波長域の光 量子量はほとんどないと考えられた.また、8月以降の データが欠測となったが、水深0mの光量子東密度は南 中高度が最も高くなる夏至の時期(6月下旬)に最も高い 値を示すと推察された(図19).ただし、6月の測定値は 6月中に晴天時の測定が行えなかったため、7月8日に測 定した結果を用いた.

図18 相対光量子率の鉛直分布

クニマスの採集水深における水温及び水中光量の推定 値を表10に示す.未成熟期のクニマスは水温5-13℃, 照度約30-3,200lux(推定換算値,以下同じ)の範囲で採 集された.11月以降(産卵期)のクニマスは水温4-7℃, 照度約10-200luxの範囲で採集された(ただし産卵場周 辺での底刺網による採集).

表10 クニマス採集水深の水温及び光条件

	採集層水温(℃)	推定照度(lux)	標本数	比率(%)	標本採集時期
	5-6	31(27-36)	2	5.6	
	6-7	71(65-76)	13	36.1	
	7-8	538(459-694)	4	11.1	2010年 (0010年
未成熟魚	8-9	612(165-1060)	7	19.4	到採果(2013年)
	9-10	1963(686-3240)	7	19.4	3月-2014年10
	10-11	-	0	0	,1,
	11-12	1060	1	2.8	
	12-13	2697	2	5.6	
	4-5	19(13-23)	46	43.0	劃鋼橋告 (0011
	5-6	48(29-67)	43	40.2	
	6-7	193	15	14.0	3日)
成熟魚	7-8	-	0		0717
	8-9	350	1	0.9	約117年 (2012年
	9-12	-	0		到抹未(2013年 10日)
	12-13	1880(1060-2700)	2	1.9	10/3/

推定照度:採集日採集水深に直近測定日の同水深層の光量子量×54(lux)による換算値の平均(最小-最大).ただし水中光量未測定期(2011年11月-2012年3月、2014年10月)は2013年 同時期の測定値をもとに推定

成熟魚は3個体のみ釣採集、他は産卵場付近で採集された二次性徴から排精排卵個体、 未成熟魚は釣採集による二次性徴を示していない個体

3-2 産卵環境及び産卵生態

(1) 産卵場湖底の潜水調査及び水中観察

潜水調査により、これまでの推定どおり西の越沖の産 卵場周辺は、広範にわたり泥が堆積していることが確 認された.確認された湖底の砂礫地分布を図20に示す. 産卵場の湖底砂礫地は図20の①(図21)が最大規模で、 縦横の長辺がおよそ8mの不整形な形状であった.砂礫 地①の任意地点の地内温度を図22に、粒度組成を表11 に示す. 地内温度は底層水温(約5.6℃)同等から9.1℃ の範囲で様々な変化を示した(図21).図20中②-⑥の 砂礫地は全て1-2m²程度と小さく、④-⑥は礫の輪郭は 確認できるものの2-5cm程度の浮泥が堆積し(図23), 指で掻く程度では2cmと掘れない固い底質が多く、底層 水温と同等の地内温度を示した(図24). 砂礫地⑦の規 模は3×5m程度で、うっすらと浮泥の堆積が確認され たが、底質が柔らかく地内温度が高い場所があり、産卵 可能と推測された(図25).沿岸に近い水深15m前後の ⑧では、フジマリモとみられる緑藻の群落が幅70m× 奥行20m程度にわたり広がり、群落周辺などに局所的 に露出した砂礫地が確認された.砂礫地⑧では底層水温 10℃に対し地内温度12.6℃を示す地点があった(図26). 潜水調査及び過去の調査結果¹⁾から,図20の砂礫地①-③及び⑦がクニマスの産卵場所,⑧周辺がヒメマスの産 卵場所と推測された.一方,桑留尾川沖湖底は広範な砂 泥帯ばかりで、砂礫地は確認できなかった.

図20 クニマス産卵保護区周辺湖底の砂礫地分布状況 (丸は地中温度の計測地点)

図21 砂礫地①と推定クニマス雌(2014年11月21日)

(①1-7:2014年10月21日、①8,9:11月21日)

表11 砂礫地①の砂礫粒度組成

区分	粒径(mm)	構成比(%)
大礫	>63	21.5
中礫	31.5-63	31.6
小礫	4-31.5	37.1
細礫	2-4	4.5
砂	<2	5.2

産卵場湖底の礫が多い場所から任意に採取(乾燥重量5,200g)

図24 砂礫地②-⑥の地内温度(2014年10月16,17日)

図25 砂礫地⑦(2014年11月21日)

図25 砂礫地⑦の地内温度(2014年11月21日)

図26 砂礫地⑧(上)と地内温度(2014年11月7日)

クニマス産卵期のROV観察では、砂礫地に複数の雄 が間隔をおいて定位し、時折近づく他の雄を追い払う様 子が観察された(図27).また、1対の雌雄があり、時 折雌が体を横向きに尾鰭で砂礫を掘る様子が観察された (図28).雄はその間、雌から少し離れて周囲を遊泳し、 掘り行動はとらなかった.産卵放精は観察されなかった. また、産卵後の雌が特定の範囲を遊泳し、近づく魚を雌 雄問わず追い払う様子が観察された(図29).

図27 産卵場湖底に定位する雄(2014年1月28日)

図28 横向きに尾で砂礫を掘る雌(2014年2月4日)

図29 産卵後の雌(上・中:下方の砂礫地周辺を遊泳, 下:近づく雄を追い払う様子,2014年2月4日)

(3) 浮魚の漂着動向と湖内流の動向

浮魚の採集地点及び西の越沖の産卵場から放流した魚型フロートの漂着地点を図30に、図30の各地点での採 集状況を表12に示す.踏査不能な南岸の溶岩地帯を除 き,副湖盆側 (a-c) 及び主湖盆南東側 (n-q) では浮魚は 全く採集されず,漂着地点に偏りがみられた.魚型フロー トは東風が優勢のときは西方向へ,南西の風が優勢のと きは北東方向へ,西から北の風が優勢のときは南東方向 へ漂流し,湖面流の動向と浮魚の漂着地点は概ね合致し た.努力量当り採集数 (CPUE,尾/人・日) が最も高かっ たのは産卵場直近のf地点の平均0.12尾/人・日で,次 いでe,j,1地点であった.採集時期は産卵場に近いf地点 が12-3月と最も長期間にわたり,傾向としてf地点より 西のd,e地点では12-1月に,東のi-m地点では1-2月に かけて採集されることが多かった.

図30 クニマス浮魚の採集地点と産卵場周辺の湖面流

表12 クニマス浮魚の地点別採集状況

採集年度	2011	2012	2013	2014	平均
採集数	14	4	19	19	14
採集地点					地点平均
d	0.03	0	0.06	0.03	0.03
е	0.09	0	0.14	0.03	0.06
f	0.12	0.04	0.18	0.16	0.13
g	0.03	0.02	0	0	0.01
h	0	0	0	0.03	0.01
i	0.06	0.02	0.06	0.11	0.06
j	0	0	0.03	0	0.01
k	0.06	0	0	0.03	0.02
I	0.03	0	0.09	0.14	0.07
m	0	0	0.03	0	0.01
左南市地	0.40	0.1.1	0.40	0.54	

各採集地点の数値はCPUE(採集尾数/採集地点ごとの踏査人・日) 年度平均は全踏査日数による平均、地点平均は各地点ごとの踏査日数による 平均(踏査日数は採集地点により必ずしも同じでない)

漂流ブイ6基から受信した位置情報により作成した漂 流軌跡を図31,32に示す.

2014年1月27日15時20分に放流した漂流ブイは, 北西から西風の影響を受けてすべて南東方向へ移動し, 同日中に着底した(図31).気象計による1月27日の風 向風速データ(図33)では,放流した15時頃から漂流ブ イが着底するまでの間,北西の風が卓越していた.

2014年1月30日11時に放流した漂流ブイも,北西から西風の影響を受けてすべてが南東方向へ移動し,同日中に着底した(図32).1月30日の風向風速データ(図34)では,放流した11時からすべての漂流ブイが着底するまでの間,北西の風が卓越していた.

軌跡図と風向風速から,一定の風向が継続していると

き,全水深の流向が風向の影響を受けていることが示唆 された.

未知の産卵場探索のため,産卵場以外の湖面から放流 した魚型フロートの漂流軌跡を図35-38に示す.副湖盆 では流入河川沖及び湖底湧水の存在が報告されている場 所¹⁵⁾の2地点で調査した結果,いずれも副湖盆内の湖岸 に漂着した(図35).主湖盆のうち桑留尾川沖(図36)及 び三沢川沖(図37)から放流したときの漂着地点は,浮 魚の漂着地点と重複していた.西湖漁協養魚池排水沖(図 38)から放流したときの漂着地点は,浮魚の漂着地点と ほとんど一致しなかった.

 入沢川沖 (水深約25m) ② エゴ沖(水深約25m)※ 湖底湧水の報告あり

図35 副湖盆の湖面流の動向

③ 桑留尾川(表流水なし)沖(水深約30m)

図36 桑留尾川沖の湖面流の動向

図38 漁協養魚池排水路沖の湖面流の動向

3-3 2才魚の飼育特性

(1) 親魚養成

2014年4月1日に2才魚467尾の飼育を開始し,2015 年3月4日時点の生残尾数は311尾であった.成熟に伴 いへい死した17尾を除き,細菌病(冷水病,細菌性鰓病), 寄生虫病(イクチオボド症,ギロダクチルス症,キロド ネラ症,トリコジナ症),水カビ病の単独感染または混 合感染によりへい死した.へい死魚には,報告例が僅少 な腎臓の著しい石灰性病変が認められたものも散見され た.

(2) クニマスとヒメマスの比較飼育試験

試験期間中の各区における飼育結果を表13に示した.平均体重は、両区とも開始時に平均69.9gと差はなかったが、取揚時にはクニマスが287.5g、ヒメマスが417.6gとヒメマス区が有意に大きかった(t 検定,p<0.01,図39).日間増重率は、クニマス0.30%、ヒメマス0.35%と、ヒメマスの方がやや高かった.クニマスは2013年11-12月にかけて寄生虫病感染によるへい死が17尾あり、最終的な生残率は、クニマス75%、ヒメマス90%となった(図40).飼料効率は、クニマス67.5%、ヒメマス82.9%でヒメマスの方が高かった.給餌の際、ヒメマスは水面付近で活発に摂餌するのに対し、クニマスは沈下途中あるいは底に沈んだ餌を摂餌するなど、両種の摂餌行動に差が認められた.

表13 比較飼育試験の成績

			クニマス	ヒメマス	
1		収容尾数	100	100	
	試験開始時 (2013/7/26)	全長(cm)	19.5 ± 1.3	19.8 ± 0.9	
		体重(g)	69.9 ± 15.1	69.9 ± 9.0	
		肥満度	9.3 ± 0.6	9.0 ± 0.5	
		総重量(g)	6,991	6,989	
		取揚尾数	75	90	
	試除紋了時	全長(cm)	29.3 ± 2.5	32.6 ± 3.3	
	(2014/0/5)	体重(g)	287.5 ± 85.5	417.6 ± 114.2	
	(2014/ 5/ 5)	肥満度	11.1 ± 1.0	11.8±2.7	
		総重量(g)	21,559	37,580	
		生残率(%)	75	90	
		増重量(g)	14,568	30,591	
		補正増重量(g)	17,880	33,292	
		給餌量(g)	29,559	40,183	
		補正飼料効率(%)	60.5	82.9	
		日間増重率(%)	0.30	0.35	

<u>日間給餌率(%)</u> 注:表中で±のある数値は平均値±標準偏差

図40 生残率の推移

(3) 成熟状況

熟度鑑別期間中の成熟個体(排卵/排精個体)の出現状 況と,全個体数(熟度鑑別開始時の全個体数)に対する 成熟個体数の累積比率を図41,42に示した.ヒメマスで は2014年9月17日に初めて排卵した雌1尾が確認され, 満3才に達した2014年10-11月にかけて約90%の個体 が排卵/排精し,その後へい死した.一方,クニマスでは, 2014年9月から2015年3月までの長期にわたり,5%の 個体(雄13個体,雌8個体)が成熟したのみであった.

(4) 飼育魚からの人工採卵

クニマスの採卵状況を表14に示した. 2014年10月1

日から2015年1月28日までの間に,熟度鑑別時にへい 死していた2個体を含む雌8個体の排卵を確認し採卵し た.採卵した雌の全長(平均値±標準偏差,以下各項目 同じ)は310±36mm,平均体重は379±134gであった. 完全に排卵していない2個体(個体ID:A012及びA023) を除いた採卵数は670±303粒で,吸水後の卵径は4.9 ±0.2mmであった.

ヒメマス16個体からの採卵状況を表15に示す.対 照のヒメマスは、排卵個体数がピークとなった10月 7日に採卵したものを用いた.これらの全長及び体重 は、それぞれ343±18mm、482±61gであり、ともに クニマスに比べ有意に大きかった(t検定, p=0.016及 びp=0.006).一方、採卵数は408±73粒で、ヒメマス はクニマスに比べ体サイズが大型であるにもかかわら ず、その採卵数はクニマスに比し有意に少なかった(t 検定, p=0.003).これは、ヒメマスの卵径が5.9±0.2mm とクニマスに比べ有意に大きいためであった(t検定, p<0.01).

表14 クニマスの採卵状況

個体ID	採卵日	全長(mm)	体重(g)	採卵数	採卵重量 (g)	卵径(mm)	備考
A019	2014/10/1	334	436	728	46.8	5.0	
A012	2014/11/5	254	187	(224)	(13.3)	4.6	約50%未排卵
A023	2014/11/12	352	557	(93)	(8.0)	5.4	約90%未排卵
A020	2014/11/19	308	350	969	63.6	4.9	
A009	2014/12/1	274	228	333	27.4	-	へい死個体
A032	2014/12/19	324	420	684	46.7	4.9	
A011	2015/1/23	286	321	297	17.4	4.8	
A063	2015/1/28	350	537	1,006	76.6	4.8	へい死個体
		310.3 ± 36.1	379.4 ± 133.9	669.5 ± 302.8	46.4 ± 21.9	4.9 ± 0.2	平均值士標準偏差
		254-352	187-557	297-1,006	17.4-76.6	4.6-5.4	最小值最大值

那径:吸水1時間後に測定(平均値) 採卵数と採卵重量の平均値等の算出には、部分的に未排卵の2個体を含まない

表15 ヒメマスの採卵状況

採卵尾数	採卵日	平均全長(mm)	平均体重(g)	採卵数	平均採卵 重量(g)	卿径(mm)	備考	
16	2014/10/7	343.0 ± 18.0	481.8±61.3	407.7±73.2	41.2±8.1	5.9 ± 0.2	排卵ピーク時の採卵	
数値は平均値土標準偏差								
卵径:吸水1時間後に測定(平均値)								

クニマス8個体から採卵し,うち7個体について人工 受精を行った結果を表16に、ヒメマス雌とクニマス雄 を交配した結果を表17に示す.また、対照としたヒメ マスの採卵結果を表18に示す.

クニマスから採卵した8個体の卵のうち,3個体 (A019,A011,A063)はクニマス雄と交配した.このうち A063は鑑別時にへい死していた.また,A011は,採 卵時に排精したクニマス雄がいなかったため,凍結保 存した精子により受精した.A012,A023,A020の3個体 はクニマス精子がなくヒメマス雄と交配した.同様に A032は,紫外線照射により遺伝的に不活化させたニジ マス(アルビノ)精子で媒精し,第二極体放出阻止により, 雌性発生誘起を試みた.

これら7個体から得られたクニマス卵の交配試験の結 果,ふ化仔魚が得られたのは,ヒメマスと交配した2個 体(A023,A020,ふ化率はそれぞれ38.7%、12.9%)のみ であった.また,ヒメマス雌とクニマス雄の交配におい ても,ふ化仔魚が得られた.

ただし、対照としたヒメマス間の交配でも発眼率

20.3%, ふ化率8.2%と低調であった.以上から, クニマ スとヒメマス間の交配は正逆いずれの組合せにおいて も, 生存性を有することが実験的に明らかとなった.

個体ID	採卵日	交配した雄 (尾数)	採卵数	発眼卵数	発眼率(%)	ふ化尾数	ふ化率(%)	備考
A019	2014/10/1	クニマス (n=1)	728	2	0.3	0	0	
A012	2014/11/5	ヒメマス(n=3)	224	0	0	0	0	
A023	2014/11/12	ヒメマス(n=3)	93	44	47.3	36	38.7	
A020	2014/11/19	ヒメマス(n=1)	969	463	47.8	125	12.9	
A009	2014/12/1	未交配	333	-	-	-	-	へい死個体
A032	2014/12/19	ニジマス(n=1)	684	0	0	-	-	雌性発生
A011	2015/1/23	クニマス(n=1)	297	0	0	-	-	凍結精子
A063	2015/1/28	クニマス(n=2)	1,006	0	0	-	-	へい死個体

表16 クニマスの人工受精結果

表17 ヒメマス雌とクニマス雄の人工受精結果

採卵尾数	採卵日	交配した雄 (尾数)	供試卵数	発眼卵数	発眼率(%)	ふ化尾数	ふ化率(%)	備	考
5	2014/10/9	クニマス (n=2)	2,791	1,100	39.4	841	30.1		

表18 ヒメマスの人工受精結果

採卵尾数	採卵日	交配した雄 (尾数)	供試卵数	発眼卵数	発眼率(%)	ふ化尾数	ふ化率(%)	備考
16	2014/10/7	ヒメマス (n=4)	1,047	213	20.3	86	8.2	採卵、プールした卵の 一部を使用

3-4 凍結保存精巣から調整した生殖細胞移植によるク ニマス代理親魚の作出

クニマス凍結保存精巣から調整した生殖細胞の移植 を、ヒメマス三倍体をレシピエントとして4例実施し、 移植約30日後におけるレシピエントの生殖隆起への生 着率は5-60%の範囲にあった(表19,図43).

表19 クニマス移植細胞のレシピエントへの生着状況

No. 移植年月日	我靖年日日	ドナー精	¥	المديد المحاربة	我结尼粉	生着率(%)			
	物他牛月口	凍結年月	個体数	DULTUR	夕恒尾奴				
1	2014/11/14	2013/12	5	ヒメマス3n	106	5 (1/20)*			
2	2014/12/30	2013/12	11	ヒメマス3n	58	50 (5/10)			
3	2014/12/30	2014/12	2	ヒメマス3n	86	60 (6/10)			
4	2015/1/6	2014/10~12	2	ヒメマス3n	75	16 (3/19)			
*生疗	*生着個体数/供試個体数								

図43 ヒメマスの生殖隆起(*)に生着した クニマス生殖細胞(矢印)

4. 考察

資源推定及び生態調査

2012年及び2013年の西湖のクニマス資源尾数は、お よそ5,000-7,500尾(1才から4乃至6才)の範囲と推定 された. 推定にあたり、資源が定常状態(毎年の加入量 及び自然死亡率が一定)にあると仮定し、資源加入後に は、すべて同一の漁獲死亡率がかかると仮定している. しかし、漁獲率に種間差がある、あるいは特定の年齢層 が釣られやすい、または成熟などにより高齢魚の生存率 が下がるといった要因が内在する場合、推定誤差が発生 する. さらに、 クニマスの産卵場が禁漁区であることか ら, 釣獲魚に含まれるクニマスの比率は, 実際の両種の 個体数比より過小に推定されている可能性もある。これ まで、クニマスに従来以上の漁獲圧を掛けないよう、秋 春のヒメマス遊漁期に得られる標本や情報の収集を主と して調査を実施してきた、そのため、得られるパラメー タやクニマス標本は少なくならざるを得ない. さらに, クニマス標本の年齢組成に偏りがみられたことが、推定 誤差を増大させている可能性もある.

しかし本研究の手法が簡易的としても、2年連続で同 程度の推定値が得られたことは、クニマス資源量が数千 尾~1万尾程度の範囲にあることを裏付けるものといえ よう.一般に魚類個体群の年変動は大きいため、今後も 資源水準のモニタリングを継続し、資源減少の際は遊漁 規制で対応するなどの順応的管理が、クニマスの保全と ヒメマス遊漁の両立に必要不可欠と考えられる.

資源調査を通じて、秋漁期のヒメマスの漁獲主体は 例年1,2才であることが明らかとなった.しかし,西 湖ではヒメマスの天然繁殖は少ないと考えられ²⁾,毎 年5月頃に放流されている0才稚魚の加入が大部分を 占めると思われた. ヒメマス遊漁で混獲されたクニマ スは、2012年はヒメマス同様1,2才が主体であったが、 2013,2014年は3才以上にシフトし、自然繁殖に由来 するクニマス資源には、年級群の豊凶に伴う変動のあ ることが示唆された. 2013年秋のヒメマス資源推定数 は2012年秋の約8.5万尾(2013年標本の最高齢5才を 寿命としたときの推定数) に対して約3.4万尾と半分以 下の水準であった. 2013年秋の資源減少要因は明らか でないが、水環境の異変の関与が疑われた. すなわち、 2013年3-9月にかけて、2012、2014年と異なる水温動 態が観測され、水深10m以浅の水温が20℃以上のまま 推移した. 生息に不適当な高水温層の発達により生息層 が狭まるなど、水環境の異変が何らかの悪影響を及ぼし た可能性が考えられた.

秋標本の分析では、2012年単年では同齢の両種間で クニマスの体長、体重が大きいことが示唆された²⁾が、 2012-2014年の多重比較では、同年同齢間の両種の体 サイズに明確な差は見出されず、採集年による差が大き かった.また,体サイズに種間差が検出された場合も, 両種のいずれかが常に優勢な傾向は認められず,ふ化時 期の違いに伴う差は明らかでなかった.長期間にわたり 散発的に産卵するクニマスは,ふ化時期に幅があり,成 長に個体差が大きい可能性が考えられた.

クニマスの成長は、耳石不透明帯の割合から、晩春か ら秋にかけて大きいものと推定された.また、成長推定 式から5才で全長約30cm, 200gに達すると考えられた. ただし採集標本の最大は5才雄の45cm,約900gであり、 餌生物の豊度と成熟年齢により個体差が大きいと考えら れた. また、体サイズにより、主たる分布層や利用する 餌生物に違いのあることが示唆された. 両種成魚は水深 40m以浅に多い傾向があり、ヒメマス稚魚は水深40m以 深に多い傾向があった.各年秋の肥満度の多重比較では、 2013年の0才ヒメマスが最低だったが、生息層の餌生 物量に対してヒメマス稚魚の放流数が過大であるか、あ るいは水深30m以深は周年5℃前後の低水温であり、稚 魚の成長が鈍かったためと考えられた. しかし両種の産 卵期(西湖ではヒメマスが推定10-11月、クニマスが推 定11-3月)を経て、成熟した大型魚がへい死し減少した とみられる2014年春は、1才ヒメマス稚魚は表層まで 分布を広げていた. クニマス稚魚はこれまで採集されて いないが、水深30m前後の深層で生まれること、両種 の幼魚や成魚の食性が重複することから、クニマス稚魚 の食性や成長もヒメマス稚魚と重複する可能性が高い.

また、カイアシ類やミジンコ類など大型の動物プラン クトンは、西湖では夏から秋にかけて多く、冬から春に かけて減少する²⁰傾向が再確認された.両種とも餌重要 度指数の高い生物はカプトミジンコであり、餌選択係数 が高かった動物プランクトン(ノロとカブトミジンコ) が豊富な2013年秋は、成魚や幼魚ではこの2種あるい はいずれかをほぼ専食していた.これらが少ない2014 年春は両種成魚や幼魚はユスリカ蛹などベントス、ヒメ マスでは落下昆虫も含め、様々な生物を採餌していた. さらに両種成魚では季節に関係なくワカサギを採餌する 個体がみられた.

また、底層に多い稚魚では生息層に多いケンミジン コ類の選択性が高く、動物プランクトンの少なかった 2014年春には、成魚や幼魚で負の選択性を示したゾウ ミジンコに正の選択性を示す個体もみられた.さらに、 両種ともに、餌選択性の高いカブトミジンコと体長差の ないヤマトヒゲナガケンミジンコに、負の選択性を示す ものがみられた.本来ヤマトヒゲナガケンミジンコもヒ メマスにとって好適な餌生物のはずだが、カブトミジン コの湖水出現密度が高く、またヒメマスは大型の動物プ ランクトンの中でもハリナガミジンコ(カブトミジンコ の近縁種)大型個体の選択性が高いとされ²¹⁾、出現密度 の低いヤマトヒゲナガケンミジンコに正の選択性を示さ なかったものと考えられた.今後、両種の成長生残を検 討するうえで,選択性が高い動物プランクトン種の密度 を餌環境の指標にすべきと考えられる.

クニマスの採集層水温は5-13℃(推定照度約30-3,200lux),産卵期には4-7℃(推定照度約10-200lux)の 範囲にあり、未成熟期にはヒメマスと同じ水温層に生息 する²²⁾と考えられた.しかし産卵期には低温低照度の 深層に集中した.後述の飼育特性試験の考察のとおり、 3才魚の成熟率が2才同様に低かったことから、産卵条 件だけでなく、成熟の進行に水温や光条件が関与してい る可能性も考えられた.

これまでの調査から、西湖のクニマスは例年11月か ら翌年3月にかけて、西の越沖水深30m前後の湖底で産 卵することが判明している. 産卵保護区湖底の大部分は 砂泥質で、水深30m前後の緩斜面に砂礫地が少数散在 していた.砂礫地の多くは1-2m²程度と小さいうえ被泥 した場所も少なくなく,確認された最大の砂礫地はおよ そ50m²程度で、砂地に礫がまとまり、あるいは散在し ていた. 礫の組成は4-63mmの小礫から中礫が70%近く を占め、底質の固い場所や柔らかい場所があり、砂礫地 内(深さ10cm程度)の温度は、湖底直上水温5℃台に対 し6-9℃の範囲で様々な変動を示した. 産卵場の礫の粒 度は、ヒメマスの産卵床の底質が3-5cmの礫または礫及 び砂との報告23),あるいはベニザケの産卵床基質の約 67%が2mm-10cmの砂礫であった報告²⁴⁾に概ね等しく、 クニマスも近縁のベニザケ系群と同様の大きさの砂礫基 質を, 産卵に利用していると考えられた.

また、河川の湧昇流がある部位でコカニー (ベニザケ 陸封型)の産卵が成功している例²⁵⁾では、0.83mm未満 の微細堆積物が15-19%を占め、流速が6.6-16.4cm/sと、 通常の産卵環境の流速より緩流で、底質は細かかったと いう.この例では河川水温0.2℃に対して湧昇流のある 砂礫地内水温は2.4-2.6℃を示した、湧昇流存在部位の 産卵成功率が高い理由として、湧昇流の水温が高く凍結 せずに卵発生が進むこと、湧昇流の存在部位は河床基質 が柔らかく稚魚が産卵床から浮上するのに有利と推測さ れている.

西湖のクニマスの産卵環境は、全体として比較的砂が 多い底質で、底質が柔らかい部位の地内温度は、底層水 温より最大3℃程度高いことが確認された.また湖底付 近は、潜水士が流れを感じられない程度の緩流(湖内流 観測では流速は深層ほど遅く、水深40mの流速は2cm/ s程度と推定された²⁾)であり、コカニーの河川湧昇流部 位での産卵例に近い環境と考えられた.

河川湧昇流部位の産卵例²⁵⁾では、砂礫地内と河川水 温に1.5℃より大きい差があれば湧昇流が存在すると推 察されており、西湖の産卵場湖底砂礫地の最大3℃の水 温差も、湧水の存在によるものと考えられた.しかし地 下水の湧出孔などは確認されず、産卵場湖底に大量の湧 水が存在するとは考えにくかった. また、水深15m前後にあるフジマリモの群落付近で は、湖底直上水温10℃に対し、約12.5℃の砂礫地内温 度が確認された地点もあった.この付近では10-11月に かけてヒメマス成熟魚及び排精排卵前のクニマスが採集 されるなど¹⁾、西湖のヒメマスの産卵場の可能性がある が、成熟したクニマスの来遊は確認されていない.ヒメ マスには母川回帰性があるため、クニマスも同じ習性を 持ち、生れた深層湖底に来遊している可能性が考えられ る.しかし各地点の湖底湧水温の違いが両種の産卵場選 択の違いをもたらしている可能性、すなわち湖底湧水の 水温差が両種の生殖隔離に寄与している可能性も否定は できない.

沿岸(水深15m前後,地内温度12℃台)と沖湖底(水 深30m前後,地内温度9℃台)とで,湧水温度に認めら れた3℃近い差が,それぞれの地下水の由来が異なるの か,地下に浸透し湧出するまでの時間や地熱差など帯水 層その他の違いによるものか,クニマス産卵場の湧水保 全のためには,水文調査により地下水の動態を明らかに し,保全対象となる帯水層深度などを特定する必要があ るだろう.

クニマス産卵期の水中観察の結果、雄が砂礫地付近に 定位し他の雄を追い払う、縄張り行動らしき様子が観察 され、散発的に産卵場に来遊する雌を巡り、雄が競争関 係にあることが伺われた.また、雄による産卵床の造成 (掘り行動)は確認されず、産卵後の雌が他の魚を追い 払う、産卵縄張りらしき行動が観察された.その他、観 察された産卵後の雌には、産卵行動によるとは考えがた いほど尾柄部の損傷が著しいものがあり、別に採集され た浮魚でも、尾柄部以外にも雌雄問わず吻部や体表、各 鰭の損傷が著しかった.

田沢湖のクニマスは元来,尾付近が焚火の燃えさしに 似ることから「キノシリウオ」と呼ばれた²⁶⁾.西湖の産 卵後の親魚や浮魚は,尾柄や吻部,各鰭や体表に様々な 程度の損傷が認められ,体色黒化もあいまって,まさに 焚火の燃えさしという印象を呈する.これらの損傷は, 産卵後の親魚が長期間にわたり生存する可能性と,産卵 行動に伴う損傷部位に着生する水カビなど病原因子によ る病変が,低温下で緩慢に進行した結果である可能性の 2点が疑われた.今後,組織学的な検討なども必要であ ろう.

西湖のクニマスの産卵場は、これまで西の越の沖以外 に確認されておらず、産卵期(1-2月)の湖内流の動向か ら浮魚の浮上元を推定できないか検討してきた.しかし ドローグを付けたフロートから得られた湖内流動向は、 産卵場付近から放流した際の深層流速を推定することが できたものの、流向は浮魚の漂着範囲とは必ずしも一致 しなかった.ドローグのないフロートを産卵場付近から 放流した場合の湖面流の動向は、南東方向に流れる場合 を除き、浮魚の漂着範囲にほぼ一致した.南東方向に流 れる場合, 漂着までに5-10時間と長時間かかりがちで, 漂流中にトビに捕食される機会が多く浮魚が漂着しにく いと考えられ, 参考とならなかった. 湖面流及び湖内流 の動向調査により, 浮魚の浮上元は既知産卵場(西の越 沖)の可能性が高いこと, 副湖盆には産卵場がない可能 性が高いことの2点が推測されるに留まり, 未知の産卵 場は発見できなかった. しかし桑留尾川や三沢川(いず れも涸沢)沖の湖面流は, 浮魚の漂着地点と矛盾しない. 今後, 産卵期の行動追跡により, 未知の産卵場がないか 検討することとしたい.

2才魚の飼育特性

ヒメマスとの比較飼育試験では、前報²⁾で報告したと おり、2014年3月までの成長に両種間で大きな差は認 められなかったが、満2才を過ぎた2014年4月以降、そ の差は徐々に開き、試験終了時の2014年9月には両種 の平均体重の差は100gを超えるに至った.給餌の際、 ヒメマスは水面付近で水しぶきを上げながら活発に摂餌 する様子が観察されたが、クニマスは水面に出ることな く、沈下途中の餌や水槽の底に沈んだ餌をゆっくりと摂 餌していた.このようにクニマスでは明らかに餌の喰い が悪く、その差が成長の差となって表れたものと推察さ れる.この餌喰いの悪さはクニマス本来の性質とも考え られるが、寄生虫や細菌などの感染症が断続的に発生し ていたため、その影響を受けた可能性も否定できない.

生残率については、2013年の11月から12月にかけ て、クニマスに寄生虫病が発生した際に両種間で差が生 じたが、その後は両種のへい死率が同様であったため、 試験終了時までその差が縮まることはなかった.なお、 クニマスに発生した寄生虫及び細菌に起因する疾病は、 後にヒメマスにおいても確認されたが、クニマスに比べ 影響は少ないようであり、今後、養殖特性として重要な 要素の一つである、抗病性についても検討する必要があ る.

成熟状況について、ヒメマスは満3才を迎える2014 年10-11月にかけて、約90%の個体が排卵または排精し その後へい死したのに対し、クニマスでは、2014年9 月から2015年3月までの長期にわたり5%の個体が成熟 したのみであった.そのため、クニマスはヒメマスと同 一条件下で飼育した場合、ヒメマスに比べ産卵期が長く、 また成熟年齢も異なる可能性が考えられた.西湖におけ るクニマスの産卵期は、晩秋から翌年早春に掛け長期間 にわたることが明らかとなっており¹¹、飼育環境下にお いても産卵期が長期間に及ぶことは、本種の特性とみて よいと考えられる.

一方,成熟年齢については,西湖で5才の個体が確認 されているが,飼育環境下で集約的に飼育した場合,自 然環境下に比べ成長が良く,早熟となる可能性もある. 2才及び3才の成熟率が約5%と同程度であったことは本 種の特性とも考えられるが,成熟に影響を及ぼしうる水 温や光条件についても検討する必要がある.本年度は疾 病の発生等もあり,その点について検討することが出来 なかったが,次年度以降の課題としたい.

クニマス3才魚からの人工採卵では、ヒメマスとの正 逆交雑個体を得たが、クニマスの次世代を得ることはで きなかった.しかし、正逆交雑個体が得られたことによ り、西湖におけるヒメマスとの生殖隔離機構の解明に資 する知見を得ることができた.これら交雑個体は引き続 き飼育を続け、稔性等について確認することとしたい. クニマスの次世代を得ることができなかった理由として は、人工受精に用いたクニマス精子の運動性はいずれも 良好であったことから、卵質が不良であったためと考え られる.良質な卵を得るためには、成熟期のクニマス親 魚を健全に飼育することが必要となるが、疾病の発生に より健全に成熟期を経たとは言い難かった.また、水温 など飼育環境も卵質に影響を及ぼす可能性があり、水温 が成熟自体に及ぼす影響に併せて卵質への影響も検討す ることとしたい.

さらに,産卵期が長期にわたるために雌雄の排卵/排 精時期にミスマッチが生じたことから,精子の凍結保存 についても検討することとしたい.

凍結精巣から調整した生殖細胞移植によるクニマス代 理親魚の作出では4例の移植実験を行い、ドナー細胞の レシピエント(ヒメマス仔魚)への生着率が5~60%の 範囲と判定された.今後は移植魚及び前年度の移植魚²⁾ を成熟まで飼育し、クニマス配偶子の形成や成熟状況な ど、代理親候補魚としての特性について評価することと したい.

5. 結 言

2010年に西湖で再発見されたクニマスについて,生 態調査,2才魚の飼育試験及び代理親の作出試験を行った.その結果,次の事項が明らかになった.

- 西湖のクニマス資源量は、2012年が5,397-6,079-7,501尾、2013年が4,979-5,459-6,384尾(それぞれ 寿命6才-5才-4才の場合)と推定された。
- 2) 釣獲されたクニマスの年齢組成は、2012年の1,2才 から2013、2014年は3、4才にシフトし、年級群の豊 凶に伴う資源水準の変動があることが示唆された。
- 3) クニマス及びヒメマスの成魚は表層から中層、ヒメ マス稚魚は底層と、体サイズにより主たる生息水深 が異なった、
- 4) 両種の成魚及び幼魚はカブトミジンコ,ヒメマス稚 魚はケンミジンコ類を主要な餌生物としていた.
- 5)動物プランクトンの少ない時期はユスリカ蛹などベ ントスや落下昆虫,成魚では季節を問わずワカサギ

を餌として利用していた.

- 6)西湖のクニマスの産卵環境は最大50m²程度の砂礫地 に依存し、湖底湧水の保全のためには、地下水の水 文調査が必要と考えられた。
- 7)養殖試験の結果、1才時は両種とも同等の成長を示したが、2才以降ヒメマスに比ベクニマスの成長が滞り、生残率も低かった。
- 8) ヒメマスは満3才となる2014年10-11月に90%の 個体が成熟に伴いへい死したのに対し、クニマスは 2014年9月から2015年3月までの長期にわたり5% の個体が成熟したのみであった。同一条件下で飼育 した場合、クニマスはヒメマスより産卵期が長く、 また成熟年齢も異なる可能性が考えられた。
- 9) クニマスとヒメマスを人為的に交配したところ,正 逆いずれの組み合わせにおいてもふ化仔魚が得られ, 両種の雑種は生存性を有することが明らかとなった.
- 10) クニマス代理親魚の作出試験において、凍結精巣から調製した生殖細胞により、ヒメマス三倍体魚仔魚への移植細胞の生着が確認された.

謝 辞

調査にあたりご協力を頂いた,西湖漁業協同組合の三 浦久組合長はじめ関係者の皆様,秋田県水産振興セン ター資源部の渋谷和治専門員はじめ職員の皆様にお礼申 し上げます.

参考文献

- 青柳敏裕,加地奈々,長谷川裕弥:クニマスの生態 解明及び増養殖に関する研究,山梨県総合理工学研 究機構研究報告書第8号,P.89-102,(2013)
- 青柳敏裕,岡崎巧,加地奈々,大浜秀規,長谷川裕弥, 勘坂弘治,市田健介,吉崎悟朗:クニマスの生態解 明及び増養殖に関する研究(第2報),山梨県総合理 工学研究機構研究報告書第9号,P.49-65,(2014)
- Yoshizaki G., Fujinuma K., Iwasaki Y., Okutsu T., Shikina S., Yazawa R., Takeuchi Y. Comp. Biochem. Physiol. Part D, 6, 1, P.55-61, (2011)
- Nakayama K., Muto N., and Nakabo T., : Mitochondrial DNA sequence divergence between "Kunimasu" Onco- rhynchus kawamurae and "Himemasu" O.nerka in Lake Saiko, YamanashiPrefecture, Japan, and their identification using multiplex haplotype-specific PCR. Ichthyol. Res. 60 (3), P.277-281, (2013)
- 5) 蘇宇, Emmanuel A. Sweke, 傳法隆, 上田宏, 松石隆. チューニング VPA を用いた洞爺湖産ヒメマスの資源 評価, 日本水産学会誌, 81(3), P.418-428, (2015)

- 伊藤外夫,石田行正:鱗相によるさけ・ます類の種 同定と年齢査定,遠洋水産研究所報告,35,P.131-154,(1998)
- (7) 田中昌一:水産生物のPopulation Dynamicsと漁業資源管理,東海水産研究所報告,28,P.1-200,(1960)
- 8) 渋谷和治: クニマス生態調査事業,平成24年度秋田 県水産振興センター業務報告書, P.320-327, (2013)
- 9) 渋谷和治:クニマス生態調査事業,平成25年度秋田県水産振興センター業務報告書,P.359-368,(2014)
- 10) 能勢幸雄,石井丈夫,清水誠:水産資源学, P.46-55, (1988)
- 11) 田中栄次:新訂水産資源解析学, P.37-38, (2012)
- Pinkas L, Oliphant MS & Iverson ILK : Food habits of albacore, Bluefin tuna, and bonito in Californian waters.

Calif.Fish Game, 152, P.1-105, (1971)

- Chesson, J. : Mesuring preference in selective predation. Ecology, 59, P.211-215, (1978)
- 14) 光合成の教室 (光の単位):Web サイト「光合成の森」 http://www.photosynthesis.jp.
- 15) 丸井敦尚,安原正也,河野忠,佐藤芳徳,垣内正久, 檜山哲哉,鈴木裕一,北川光雄:富士山北麓西湖の 水質と湖底湧水,日本水文科学会誌第25巻第1号, P.1-12, (1995)
- 16) 訳本さけとますの養殖改訂版,長野県水産指導所, P.104,(1963)
- 17) Lee S., Iwasaki Y., Shikina S. and Yoshizaki G.: Proc. Natl. Acad. Sci. USA, 110, 5, P.1640-1645, (2013)
- Okutsu T., Suzuki K., Takeuchi Y., Takeuchi T. and Yoshizaki G. : Proc. Natl. Acad. Sci. USA, 103, 8, P.2725-2729, (2006)
- 19) 岩崎佳子,吉崎悟朗:解離精原細胞に対するRhoキ ナーゼ (ROCK) インヒビター処理は宿主への移植 効率を改善する,平成26年度日本水産学会春季大会 講演要旨集,46,(2014)
- Takeuchi Y., Yoshizaki G. and Takeuchi T. : Biol. Reprod., 69, 4, P.1142-1149, (2003)
- 21) 紺野香織,坂野博之:福島県沼沢湖に生息するヒメ マスの動物プランクトン選択性,水産増殖,58(1), P.121-126,(2010)
- 22) Nakabo T. et al.: Growth-related morphology of "Kuni-masu" (Oncorhynchus kawamurae: family Salmonidae) from Lake Saiko, Yamanashi Prefecture, Japan. Ichthyol. Res., 61 (2), 115-130. (2014)
- 日本水産資源保護協会:湖沼環境の基盤情報整備事 業報告書 十和田湖, P.40-42, (2004)
- 24) Lorenz, J. M. and J. H. Eliter : Spawning habitat and red characteristic of sockeye salmon in the

glacial Taku River,British Columbia and Alaska. Trans. Am. Fish. Soc. 118, P.495-502, (1989)

- 25) James W. Garrett, David H. Bennett, and Frank O. Frost : Enhanced Incubation Success for Kokanee Spawning in Groundwater Upwelling Sites in a Small Idaho Stream. North American Journal of Fisheriries Management 18, P.925-930, (1998)
- 26) 杉山秀樹:田沢湖まぼろしの魚クニマス百科, P.181-184, (2000)

成果発表状況

学会発表

- 1) 坪井潤一,松石隆,渋谷和治,岡崎巧,高橋一孝: 西湖におけるクニマスの資源量推定,平成26年度日 本水産学会春季大会,北海道(2014)
- 2)長谷川裕弥,吉澤一家:西湖(富士五湖)の水鉛直 分布の季節変動について,第48回日本水環境学会年 会,仙台(2014)
- 3) 大浜秀規, 森下匠: 飼育下におけるクニマスの成長 と成熟, 日本水産増殖学会第13回大会, 広島 (2014)
- 4) 青柳敏裕,岡崎巧,谷沢弘将:西湖のクニマスの生態について:平成26年度日本魚類学会年会,神奈川 (2014)
- 5) 長谷川裕弥,吉澤一家:GPSを搭載した漂流ブイに よる西湖の水深別湖内流の観測,第49回日本水環境 学会年会,金沢(2015)

アニオン交換型燃料電池用電解質膜の 研究開発

Research and Development of Anion Exchange Electrolyte Membrane for Fuel Cells

アニオン交換型燃料電池用電解質膜の研究開発(第2報)

三神 武文¹, 佐藤 貴裕¹, 西村 通喜², 阿部 治², 横田 尚樹³, 島田 愛生³ (¹山梨県工業技術センター, ²富士工業技術センター, ³タカハタプレシジョンジャパン(株)

Research and development of anion exchange electrolyte membrane for fuel cells (2nd report)

Takefumi MIKAMI¹, Takahiro SATO¹, Michiyoshi NISHIMURA², Osamu ABE², Naoki YOKOTA³ and Manai Shimada³ (¹Yamanashi Prefectural Industrial Technology Center, ²Yamanashi Prefectural Fuji Industrial Technology Center, ³TAKAHATA Precision Japan Co., Ltd.)

要約:プロトン交換膜に代わりアニオン交換膜(陰イオン交換膜)を用いた固体高分子形燃料電池が近年注目されている. この方式ではより安価な金属触媒や構成材料が使用可能で,液体燃料の使用に適するなどの利点があるが,電解質膜の耐 久性などに課題がある.本研究ではこの重要材料であるアニオン交換膜を研究した.

これまで芳香族ポリエーテルをベースとした電解質膜 (QPE) を検討してきた. QPE 膜はポリマーをクロロメチル化し たのち,アミンとのメンシュトキン反応により四級化して作製していたが,クロロメチル化は制御が難しくまた有害な試 薬を使用していることから別法を検討した.具体的には,各種アミンを有するビスフェノールモノマーを合成したのち重 合,四級化する簡便な電解質膜合成法を確立した.様々なアンモニウム基が定量的に導入可能となり,長鎖アルキルアン モニウム,環状アンモニウムなどをイオン交換基として有する QPE 膜を合成して評価した.これらのイオン交換基は代 表的なトリメチルアンモニウム基 (TMA) と比較して,アルカリ環境中での安定性は向上したもののイオン伝導度は低下 した.また主鎖のエーテル結合の分解も示唆された.

そこで新たに,エーテル結合を持たないポリフェニレン構造を親水部に取り入れた電解質膜 (QPP) を新たに合成した. QPE 膜と比較すると,QPP 膜は低い含水率でより高いイオン伝導度示す優れた膜であった.アルカリ環境中の安定性試験 (40℃の1M KOH水溶液中)では,QPE は300時間以降イオン伝導度が測定不可になったが,QPP では1000時間後も 高いイオン伝導性を維持し,安定性が大きく向上した.アルカリ環境中での高分子主鎖の安定性が重要であることが示さ れた.

Abstract : The polymer electrolyte fuel cell which used the anion exchange membrane instead of the proton exchange membrane has attracted attention in recent years. Although this system has a subject in durability of electrolyte membranes, there is an advantage such as the availability of an inexpensive metallic catalyst and constituent material, and the suitability for use of liquid fuel. In this research, the anion exchange membrane which is this important material was studied. Previously the polyether electrolyte membrane was synthesized by chloromethylation and quaternization with amine (Menschutkin reaction). The chloromethylation reaction was difficult to control and has used harmful reagents, therefore an alternative method was investigated. In particular, original bisphenol monomers having various amine groups were synthesized, and electrolyte membranes were synthesized from those monomers by easier method. The synthesized aromatic polyether electrolyte membranes were shown better stability in an alkaline environment then the membrane having typical trimethyl ammonium (TMA) group. The decomposition of the polyether main chain was also suggested. Therefore, the renewed electrolyte membrane having polyphenylene structure without ether bond at hydrophilic segments were synthesized. The membranes having polyphenylene structure was shown excellent alkaline stability as compared to conventional polyether membranes. It was suggested that the stability of the polymer main chain in an alkaline environment were important.

1. 緒 言

高分子電解質膜を使用する固体高分子形燃料電池 (PEFC)は小型・低温作動可能などの利点から様々な用 途での開発が進んでいる.国内出荷台数10万台を数え る家庭定置用燃料電池エネファーム(一部は固体酸化物 形SOFC)や2014年末にトヨタ自動車から市販が開始 された燃料電池自動車MIRAIではこのPEFCが使用さ れている.また近年ではフォークリフト用電源,ポータ ブル電源,僻地・災害用電源などでも活用され始めてい るが,広範な普及のためには高い耐久性・信頼性ととも に,さらなる高性能化と一層の低価格化が必要である. 現在実用化されているPEFCは高分子電解質膜とし てプロトン交換膜を使用しており、白金などの貴金属触 媒と安定性に優れたフッ素系の電解質膜により長期信頼 性が確保されたシステムが確立されている.

対してアニオン交換膜型は、水素と酸素の化学反応に より電気を取り出す点は同じであるがその化学反応が異 なる.そのため非貴金属触媒の利用や低い酸素還元過電 圧などの利点があり、より安価な材料で構成できる可能 性から近年注目を集めている(図1).しかしフッ素系の プロトン交換膜ように化学的・機械的安定性に優れた電 解質膜がまだ開発されておらず長期間の運転は達成でき ていない.実用化のためには高い性能と安定性を有する アニオン交換膜の開発が急務である.

本研究ではこの重要材料であるアニオン交換膜を研究 した. イオン伝導性や化学的安定性に優れるイオン交換 基や高分子主鎖を検討した.

図1 アニオン交換型燃料電池

2. 実験方法

2-1 試薬

Decafluorobipheyl (DFBP), hexafluorobisphenol A (HFBPA), 4,4'-dihydroxydiphenylether (DHDPE), ピペリジン, ピロリジン, モルホリン, 硫酸エステル 類, 各種ハロゲン化アルキルは東京化成工業から入手 し市販のまま使用した. クロロメチルメチルエーテル (CMME), 1,1,2,2-テトラクロロエタン (TCE), ジメチ ルアミン水溶液, ホルムアルデヒド液, ヨウ化メチル, 炭酸カリウム, Ni (cod)₂, 2,2'-bipyridine, ジメチルア セトアミド (DMAc) は関東化学から入手し, DMAc はモ レキュラーシーブで乾燥後, それ以外は市販のまま使用 した. トリメチルアミン水溶液, 塩化亜鉛 (THF 溶液) はAldrichから入手し市販のまま使用した. その他の化 学薬品は、市販の等級のものをそのまま使用した.

2-2 アミンを有するモノマーの合成

アミンを有するモノマーはDHDPE, 各種アミン(ジ メチルアミン, ピペリジン, ピロリジン, モルホリン) とホルムアルデヒドのMannich反応により合成した. DHDPEに対してアミンとホルムアルデヒドを2等量以 上加え, 溶媒としてエタノールを用い室温で24~48時 間撹拌した. いずれのアミンに対しても反応の進行にと もない目的物が析出し溶液が白濁した. ろ過により回収 後, エタノール, 純水で洗浄し白色粉末として目的物を 得た. ジメチルアミン体 (DADPE) での収率は64%で あった.

2-3 ブロック共重合型電解質膜(QPE-1)の作製

疎水部とジメチルアミン側鎖を有する親水部前駆部からなるブロック共重合型の電解質膜を合成した.疎水部はDHDPEとDFBP,親水部はDADPEとDFPBを炭酸カリウム存在下,DMAc中60℃で重合させ,それぞれのオリゴマー(低分子量体)を合成した.仕込み化学量論比を制御することで鎖長と末端を制御し,目的とする構造のオリゴマーを白色固体として得た.続いて合成したそれぞれのオリゴマーを炭酸カリウム存在下,DMAc中60℃で重合させた.反応溶液をイオン交換水に滴下,白色沈殿物としてブロック共重合型のポリマーを得た.

合成したブロックポリマーをDMAcに溶解させ,アル キル化剤としてヨウ化メチルまたは硫酸ジメチルをアミ ンに対して小過剰加え室温で6時間撹拌し四級化した. 反応溶液を50℃に加熱したホットプレート上に水平に 置いたガラス板上に広げ溶媒キャスト法で製膜,膜厚 約50 µ m,10×10cm角の淡黄色透明な膜を得た.さら にこの膜を室温で1M KOH水溶液に48時間浸漬し塩基 処理,対イオンがOH に交換された淡黄色透明の膜とし て電解質膜を得た.

2-4 各種イオン交換基を有する電解質膜の作製

イオン交換基を評価するため、各種アンモニウムをイ オン交換基として有する電解質ポリマーを合成した.ま ず、各種アミンを有するモノマーとDHDPE, DFBPを 炭酸カリウム存在下, DMAc中で重合し、反応溶液をイ オン交換水に滴下, 白色沈殿物としてランダム構造のポ リマーを得た.得られたジメチルアミン体および環状ア ミン(ピペリジン,ピロリジン,ピペリジン)の前駆ポ リマーをDMAcに溶解させ、アルキル化剤としてヨウ 化メチルまたは硫酸ジメチルを小過剰添加し室温で6時 間以上撹拌して四級化した.また長鎖アルキル基アンモ ニウム基はヨウ化デシルまたは硫酸ジブチルによりジメ チルアミン体を四級化して合成した.

得られたポリマーをDMAcに溶解し、50℃に加熱し たホットプレート上に水平に置いたガラス板上に広げ溶 媒キャスト法で製膜, 膜厚 約50 µ m, 10×10cm角の 無色透明~黄色透明な膜を作製した.続いて室温で1M KOH水溶液に48時間浸漬し塩基処理,対イオンがOH⁻ に交換された電解質膜を得た.

2-5 親水部をポリフェニレン構造とした電解質膜 (QPP)の作製

疎水部オリゴマーはHFBPAとDFBPを炭酸カリウム 存在下DMAc中60℃で2h反応, DFBPのフッ素末端と し、続いてp-クロロフェノールでエンドキャップし塩素 末端として合成した. 仕込み化学量論比を制御すること で鎖長と末端を制御し、目的とする構造のオリゴマーを 白色固体として得た. 続いて得られた塩素末端オリゴマー をp-ジクロロベンゼン, m-ジクロロベンゼンとNi (cod) 2, 2.2'-bipyridineを用いてDMAc中80℃で共重合した. 目 標のIECにあわせて親水部となるp-ジクロロベンゼン、 m-ジクロロベンゼンの仕込み量を調整した.得られたポ リマーをTCEに溶解し、CMME および塩化亜鉛のTHF 溶液を加え80℃・120時間クロロメチル化した. このク ロロメチル化されたポリマーをTCEに溶解し、ホットプ レート上のガラス板で溶媒キャスト法により成膜し、続 いてトリメチルアミン水溶液に48h浸漬して四級化した. 続いて1M KOH水溶液へ48時間浸漬し、カウンターイオ ンを交換しOH フォームの膜を得た.

2-6 評価

NMRはJEOL JNM-ECA500 により測定した.

GPCは移動相として臭化リチウムを0.01Mの濃度で 添加したジメチルホルムアミドを,カラムはShodex KF-805使用した.分子量はポリスチレン標準物質によ る検量線から算出した.

イオン交換容量 (IEC) は¹H NMRの積分値から算出 した.

イオン伝導度はSolartolon 1255B/1287または HIOKI 3532-80を用いて、交流4端子法(300 mV, 10-100000 Hz)により測定した. 膜を直径1mmの金ワイヤー を電極としたセルに固定し、二酸化炭素の影響を避ける ため、脱気後に窒素で飽和させた超純水中で評価した.

含水率は乾燥重量に対するウェット重量の比率から算 出した.乾燥重量は80℃で加熱真空乾燥した直後に測 定した.ウェット重量は膜を超純水中に48時間以上浸 漬した後,表面の水分をペーパータオルで軽く拭き取り 重量を測定した.

アルカリ環境での安定性は,評価温度に設定した恒温 槽に設置した1M KOH水溶液に膜を浸漬し,イオン伝 導度の変化を評価した.

3. 結果および考察

3-1 アミンを有するビスフェノールモノマーの合成

アミンを有するモノマーはDHDPEと各種アミンとホ ルムアルデヒドのMannich反応により合成した(図2).

図2 アミンを有するビスフェノールモノマーの合成と ジメチルアミン体(DADPE)の化学構造

溶媒としてエタノールを用い,アミン類とホルムア ルデヒド水溶液を加えよく撹拌した後,DHDPEのエタ ノール溶液を滴下し,室温で撹拌した.目的物はエタノー ルへの溶解性が低いため,反応の進行にともない白色固 体として析出した.ホルムアルデヒド水溶液と混合可能 なテトラヒドロフラン (THF) なども溶媒として使用可 能であったが,目的物が析出せず,また溶媒除去や再沈 殿などの処理により赤色の副生成物が発生しやすく不適 であった.¹H NMR (図3) やGCMSにより,いずれのア ミンを用いても目的物が得られていることを確認した.

図3 DADPEの¹H NMRスペクトル

3-2 ブロック共重合型電解質膜の作製

疎水部とジメチルアミン側鎖を有する親水部前駆部か らなるブロック共重合型の電解質膜 (QPE-1) を合成し た. QPE-1の合成を図4に示す.

疎水部オリゴマーはDHDPEとDFBPを炭酸カリウ ム存在下,DMAc中60℃で反応させ,水酸基(DHDPE) 末端として合成した.水酸基末端は架橋・ゲル化しやす く,HFBPAとDFBPの組み合わせでは水酸基末端の目 的物が得られなかった.一方DHDPEとDFBPでは反 応時間を適切に調整することで目的物を得た.親水部オ リゴマーも同様にDFPBとDABPAを炭酸カリウム存 在下,DMAc中で反応させフッ素 (DFBP) 末端として 合成した.側鎖にアミンを有してもモノマーの反応性は 変化せず定量的にオリゴマーが生成した.それぞれのオ リゴマーの鎖長は仕込みの化学量論比で制御し,¹H,¹⁹F NMR およびGPCから目的とする鎖長 (疎水部鎖長= x, 親水部鎖長= y),末端構造として得られていることを確 認した.得られたそれぞれのオリゴマーを1:1で反応さ セブロック共重合型のポリマーを合成した.仕込み量は NMRの積分値から算出した鎖長により決定し,DMAc 中で反応させマルチブロックポリマーを得た.¹H,¹⁹F NMRスペクトルで目的の構造を,GPCからは高分子量 (M_n > 50kDa) であることを確認した.

続いてブロックポリマーをDMAcに溶解させ、アルキ

ル化剤としてヨウ化メチルまたは硫酸ジメチルをアミン に対して小過剰加え室温で6時間撹拌し四級化した.¹H NMRスペクトルよりともに定量的に四級化されたことが 確認された.この反応溶液を溶媒キャスト法で製膜し電 解質膜を作製したが、ヨウ化メチルにより四級化した膜 は淡黄色〜黄色であったのに対し、硫酸ジメチルにより 四級化した膜は透明〜淡黄色となった.蛍光X線分析に より確認したところ、ヨウ化メチルにより四級化した膜 はヨウ素の残留が確認され、黄色の着色の原因は小過剰 のヨウ化メチル残留成分によると考えられた.また1M KOH水溶液に48時間膜を浸漬しOHへのイオン交換し たのちもヨウ素は少量残留していた.一方、硫酸ジメチ ルによる四級化では硫黄の残留は確認されなかった.

図5 クロロメチル化により作製したブロックポリマー電解質(QPE-2)の化学構造

3-3 ブロック共重合型電解質膜の評価

IECおよび四級化試薬の違いを比較した.また疎水部 構造が若干異なるが,従来のクロロメチル化により作製 した電解質膜(QPE-2,図5)と比較した.イオン伝導度・ 含水率の結果を表1に示す.

ヨウ化メチルおよび硫酸ジメチルにより四級化した QPE-1 (x6y8) はIEC (1.90 meq/g) が同じであるにもか かわらず, 硫酸ジメチルで四級化した方が明らかに高い イオン伝導度と含水率を示した. 両者とも¹H NMR スペ クトルは同一で, 四級化は定量的に完了し化学構造に 差は見られなかったことから対イオンの差と考えられ た. ヨウ化メチルによる四級化では対イオンがヨウ化物 イオンとして得られるが, KOH水溶液による処理後も 膜中にヨウ素の残留が確認されており, OH フォームへ 完全には変換されていない可能性がある. 一方硫酸ジメ チルでは硫黄の残留が確認されなかったことから, OH フォームへ完全に変換され高い伝導度を示したと思われ る. 従ってこの系においては, ヨウ化メチルより硫酸ジ メチルによる四級がより適していると判断された.

QPE-2と比較するとQPE-1は同程度のIECでやや低い伝導度と含水率を示した.QPE-2はより疎水性が高い疎水部のため、相分離構造が影響したと考えられる. 60℃の水中においてQPE-1(IEC =1.90 meq/g)は45 mS/cmでありQPE-2(IEC =1.91 meq/g)の53 mS/cm 同様高いイオン伝導度を示しており、本合成法でもイオン伝導性の優れた電解質が合成できることが示された.

従来法ではクロロメチル化に有害なクロロメチルメチ ルエーテルを使用し,長時間(80℃,120時間)の反応 が必要であったが,本法では新規モノマーの重合により, より簡便で安定に電解質膜が合成可能であった.

Polymer	IEC ^a	$conductivity^{b}$	Water uptake
(block length x,y)	(meq/g)	(mS/cm)	(%)
QPE-1 (x6y8) $^{\circ}$	1.90	32	72
QPE-1 $(x6y8)^{d}$	1.90	45	125
QPE-1 (x6y6) $^{\circ}$	1.63	29	51
QPE-1 $(x6y6)^{d}$	1.63	39	84
QPE-2 (x5y11)	1.91	53	149
QPE-2 (x5y4)	1.31	38	64

表1	ブロッ	/クポリ	$\overline{\mathbf{z}} - 0$	D伝道度お	上75全水率
1. 1	, n ,	· _ ·s· _	· ·	714年1233	60 D M +

 a calculated from 1H NMR spectra. b measured in water (60°C). c quaternized with CH_3I, d quaternized with (CH_3O)_2SO_2.

3-4 各種イオン交換基を有する電解質膜の作製

TMA基は優れたイオン伝導性を示すが,アルカリ環 境中での分解が示唆されたため,よりアルカリ安定性に 優れたイオン交換基を検討した.イオン交換基の比較が 主目的であるため,合成手順の多いブロックポリマーで はなく,合成容易なイオン交換基をランダムに有するポ

リマーを合成した (図6).

ジメチルアミンおよび環状アミン(ピペリジン,ピロ リジン,ピペリジン)を有するビスフェノールモノマー とDHDPE,DFBPをDMAc中K₂CO₃存在下で共重合し 前駆ポリマーを合成した.いずれのモノマーを用いても 高分子量(*M*_n> 50kDa)が得られていた.四級化において, メチル化・ブチル化には硫酸エステルを,デシル化は硫 酸エステルが入手できないためヨウ化デシルを使用し, ジメチルアミン,環状アミンそれぞれに対してメチル・ ブチル・デシル基が導入されたアンモニウム基へと変換 した.¹Hスペクトルでいずれも完全に四級化された目 的の構造を確認した.

図6 ポリマーと各種イオン交換基の化学構造

溶媒キャスト法により製膜後,室温で1M KOH水溶 液に48時間浸漬し塩基処理,対イオンをOH に交換し た.いずれの膜も無色~淡黄色透明で強靱な膜が作製で きた.

3-5 各種イオン交換基を有する電解質膜の評価

これまで長鎖アルキルアンモニウム,環状アンモニ ウムを検討したが,さらにこれらを組み合わせたイオ ン交換基を検証した.ポリマーは親水部と疎水部を1:1 (x=0.5, y=0.5,図6)とした.各イオン交換基の結果を 表2に示す.

前報同様、TMA、C4、C10 とアルキル基が長くなる に従い、イオン伝導度は大きく低下、含水率も低下し た.環状アンモニウムに長鎖アルキル基を導入した場合 も同様で、イオン伝導度・含水率は大きく低下した.特 にヨウ化デシルで四級化した. C10, Pyr (C10), Pip (C4), Pip (C10), Mor (C10) においては、非常に低い イオン伝導度のためインピーダンス測定が安定せず、ま たIEC=1.3meg/g程度にもかかわらず含水率は3%以下 を示し、80℃の水中に24時間浸漬してもほとんど膜は 膨潤しなかった. ヨウ化アルキルによる四級化ではヨウ 素の残存が懸念される. 蛍光エックス線分析で確認した ところ、1M KOH水溶液48時間の処理でもヨウ素は残 留しており、OH-へのイオン交換が不十分であったこと が低い含水率の原因と考えられる. そこでイオン交換条 件を検討したところ、1M炭酸水素ナトリウム水溶液で HCO3 へ交換へはイオン交換しやすく、続いて1M KOH 水溶液処理することで大部分がOHへ交換できた。しか し、対イオンがOHでもイオン伝導度・含水率は低くと どまった. Pip (C4), Pip (C10) においては処理後もイ ンピーダンス測定が安定せず、イオン伝導度は測定でき なかった.

表2 各種イオン交換基を有する膜の伝導度および含水率

ion-exchange	IEC ^a	$conductivity^{b}$	Water uptake
group	(meq/g)	(mS/cm)	(%)
TMA	1.71	19.2	32.1
C4	1.59	2.1	9.5
C10	1.40	0.25	3.9
Pyr(C1)	1.64	10.3	22.8
Pyr(C4)	1.53	1.0	3.6
Pyr(C10)	1.36	0.18	2.0
Pip(C1)	1.60	5.1	19.0
Pip(C4)	1.50	- ^c	1.7
Pip (C10)	1.33	- ^c	1.4
Mor(C1)	1.59	12.0	12.1
Mor(C4)	1.49	1.5	4.2
Mor(C10)	1.33	0.22	3.1

 a calculated from $^{1}\mathrm{H}$ NMR spectra. b measured in water (60°C). c unmeasurable.

一般的に高い含水率は膜強度を低下させるため,含水 率を抑えながら伝導度を維持できれば優れた膜となる. しかし,長鎖アルキル基の導入は含水率を大きく低下さ せ同時にイオン伝導度も大きく低下させた.特にイオン 伝導度はいずれの膜も2 mS/cm以下まで低下し,アニオ ン伝導膜としての利用は難しい. Mor (C1)は比較的高 いイオン伝導と低い含水率を両立していたが,アルキル 基の導入によりイオン伝導度の低下が著しい結果となっ た. アルカリ環境での安定性試験を80℃,1M KOH水溶 液中で実施し100時間後のイオン伝導度を比較した.試 験後の外観は、TMAは膜が硬くなり破断し測定不可で あった一方、環状アンモニウム、長鎖アルキルアンモニ ウム,その両方を導入した膜は試験後も形状を保持した. C10, Pyr (C10), Pip (C10), Mor (C10)は、その低い 含水率のため膨潤せず、柔軟性などにはほとんど変化は 見られなかった.

100時間後のイオン伝導度の残存率 (変化率) を図7に 示す. TMAは膜の破断のため、Pip (C4), Pip (C10) は インピーダンス測定が安定せず評価できなかった.

図7 イオン交換基のアルカリ安定性試験(100h)

C10, Pyr (C4), Pyr (C10), Mor (C4), Mor (C10) は比較的高いイオン伝導度の残存率を示した. これらは 試験前において膜の含水率が非常に低く,またイオン伝 導度も低い. 含水率が低いため膜中へのアルカリが進入 しにくく,変化が小さかったと考えられる. アルキル基 の導入は含水率を低下させアルカリ環境中での安定性耐 久性を向上させるが,イオン伝導度を著しく低下させる ため実用的ではなかった.

また安定性試験前後の膜の化学構造を¹H, ¹⁹F NMRス ペクトルにより比較した.いずれもイオン交換基部分に ほとんど変化はなかったが,¹H NMRではベンゼン環部・ ¹⁹F NMRではフルオロフェニル部分のピークが減少し ており、特にイオン交換基近傍の主鎖のポリエーテルの 分解が主であると考えられた.

3-6 親水部ヘポリフェニレン構造を導入したブロック ポリマー(QPP)の合成と電解質膜の作製

これまで検討してきた芳香族ポリエーテル主鎖の電解 質膜 (QPE) はアルカリ環境中の分解が示唆された.そ の分解部位はイオン交換基に近い主鎖のエーテル結合部 が主と推測されたため,親水部にエーテル結合を含まな いポリフェニレン構造を導入した電解質を新たに合成し た.従来のポリエーテルと主鎖構造比較のため,イオン 交換基はTMAとした. その合成を図8に示す.

はじめに疎水部となるオリゴマーを合成した.疎水部 オリゴマーはHFBPAとDFBPを炭酸カリウム存在下, DMAc中60℃で2時間反応したのち末端基のフッ素を*p*-クロロフェノールでエンドキャップした.親水部となる ポリフェニレン部はジクロロベンゼンから重合される が,疎水部オリゴマー末端がフッ素では反応性が低く重 合しないため,エンドキャップにより塩素末端として合 成した. 続いて得られた塩素末端オリゴマーを*p*-ジクロロベ ンゼン, *m*-ジクロロベンゼンとNi (cod)₂, 2,2'-bipyridine を用いてDMAc中80℃で共重合した.モデル反応とし て*p*-ジクロロベンゼン, *m*-ジクロロベンゼンのみを重 合したところ,生成ポリマーの溶解性が非常に低く低 分子量体しか得られなかったが,*p*-ジクロロベンゼン: *m*-ジクロロベンゼン= 20:80で組み合わせると最も溶解 性が高く高分子量体が得られた.そのため親水部はすべ てこの比率で重合した.

 $(R_4 = H \text{ or } CH_2N^+(CH_3)_3 OH^-)$

図8 親水部にポリフェニレン構造を導入したブロックポリマー(QPP)の合成

X ^a	n n ^b	n . c . n ^c	$M_{ m n}^{ m d}$	$M_{ m w}{}^{ m d}$	Degree of	IEC ^f	
	p.q.r	p.q.1	(kDa)	(kDa)	${\sf chloromethylation}^{{\scriptscriptstyle { m e}}}$	(meq/g)	
4.2	1:2:8	1.0 : 2.5 : 9.9	14.5	319	0.8	2.0	
5.9	1:2:8	1.0:2.6:11	7.5	138	0.9	1.8	
5.7	1:1:5	1.0 : 1.8 : 7.3	15.4	142	0.9	1.3	

表3 親水部にポリフェニレン構造を導入したブロックポリマー(QPP)の合成結果

^a Determined by ¹H NMR spectra. ^b Calculated from the feed ratio. ^c Determined by ¹H NMR spectra. ^d Determined by GPC analyses (calibrated with polystyrene standards) . ^e Degree of chloromethylation = (number of chloromethyl groups per phenylene ring in the oligophenylene moieties) , calculated from ¹H NMR spectra. ^f Expected IECs calculated from ¹H NMR spectra.

疎水部オリゴマーの仕込み量はNMRの積分値から算 出した鎖長(x)により決定,目標のIECにあわせて疎 水部オリゴマー(p),親水部となる*p*-ジクロロベンゼン (q),*m*-ジクロロベンゼン(r)の仕込み量を調整した. 得られたポリマーは¹H,¹⁹F NMRスペクトルで目的の構 造を,GPCからは高分子量であることを確認した.そ れぞれの仕込み量と得られたポリマーの分子量を表3に 示す.

続いて合成したポリマーをTCEに溶解し,CMMEおよび塩化亜鉛のTHF溶液を加えクロロメチル化した. ポリフェニレン部分が選択的にクロロメチル化され親水 部となる.反応温度,反応時間,濃度などの条件により クロロメチル化率は変化するが,最も適切な80℃・120 時間の条件では一つの芳香環に対して約一つのクロロメ チル基が導入され,クロロメチル化率(DC)は0.8~0.9 であった.

クロロメチル化されたポリマーをTCEに溶解し、ホッ トプレート上のガラス板で溶媒キャスト法により成膜 し、続いてトリメチルアミン水溶液に浸漬して四級化し た.48時間以上浸漬することで100%四級化された.続 いて1M KOH水溶液へ48時間浸漬し、カウンターイオ ンを交換しOH フォームの膜を得た.ポリエーテル主鎖 の膜と比較するとやや硬いが、柔軟で強靱な膜であった. 作製した電解質膜を図9に示す.

cinorane	memorane	memora
embrane	membrane	membra
embrane	membrane	nembra
embrane	membrane	mombra
embrane	membrane	membra
embrane	membrane	membra
mbrane	membrane	membra
mbrane	membrane	membra
		and the second second second second

図9 作製した QPP 電解質膜

3-7 親水部へポリフェニレン構造を導入したブロック ポリマーの評価

疎水部鎖長x,親疎水部比率p,q,rの組み合わせより IECを調整した3種を評価した.その結果を表4に示す.

表4 QPP膜のイオン伝導度および含水率

		-		
	p:q:r	IEC ^a	conductivity ^b	Water uptake
X		(meq/g)	(mS/cm)	(%)
5.7	1.0 : 1.3 : 5.3	1.3	36.0	37.0
5.9	1.0 : 2.0 : 8.0	1.8	80.2	41.5
4.2	1.0 : 2.0 : 8.0	2.0	117	67.6

 a calculated from $^{1}\mathrm{H}$ NMR spectra. b measured in water (60° C),

イオン伝導度はIECの増加とともに増加し,最も高 いIEC (2.0 meq/g)を有するQPP膜は,60℃の水中に おいて117 mS/cmと非常に高いイオン伝導度を示した. また含水率もIECとともに増加したが,IEC (2.0 meq/ g)を有するQPP膜でも68%と低くとどまった.

同じクロロメチル化により作製したポリエーテル電解 質膜 (QPE-2,図5) と水中30℃におけるイオン伝導度, 含水率比較した (表5).低いIEC (1.3meq/g) で比較す ると,QPPは同程度のイオン伝導度であるが含水率は 約半分に抑えられた.高IEC (2.0meq/g) では,QPPは 含水率が約半分に抑えられているにもかかわらずイオ ン伝導度は約2倍と優れた性能を示した.親水部のポリ フェニレン構造の局所的に高いイオン密度により優れた イオン伝導性を示し,またその剛直な化学構造により含 水を抑制したと考えられる.

また,イオン交換基(TMA)一つあたりの水分子数(λ) を評価すると、QPEはIECとともに増加するのに対し、 QPPはIECによらずほぼ一定の値を示した.ポリフェ ニレンの剛直な親水部構造がイオン伝導に寄与しない水 の吸着を抑制するためと考えられ、QPP膜は少量の水 がイオン伝導に効率的に利用されていた.

Polymer	IEC ^a	$\operatorname{conductivity}^{\mathrm{b}}$	Water uptake	λ^{c}	
	(meq/g)	(mS/cm)	(%)		
QPP	1.3	22.5	37.0	15.8	
QPP	1.8	50.6	41.5	12.8	
QPP	2.0	74.4	67.6	18.8	
QPE	1.3	21.2	37.0	26.2	
QPE	2.1	34.1	149	39.4	

表5 QPPとQPEの比較

 a calculated from 1H NMR spectra. b measured in water (30°C). c number of water molecules per ammonium group.

アルカリ環境中における QPP 膜と QPE-2 膜の安定性 を比較・評価した.これまで QPE は80℃の1M KOH水 溶液中で評価していたが,評価条件が厳しいため膜が硬 化・破断しやすくイオン伝導度測定が困難であった.そ こでより温和な40℃の1M KOH水溶液中での試験とし, 膜をイオン伝導度測定用セルに固定した状態で安定性 試験に供した.またOH フォームの膜は空気中の二酸化 炭素によって HCO3 へと交換されるが,この影響も除く ため OH へ交換前の CF フォームの膜で試験を開始した. イオン伝導度の変化を図10 に示す.

いずれも24時間後にイオン伝導度が急激に上昇した が、これはCl⁻からOH⁻へのイオン交換によるものと考 えられる.QPP膜はそれ以降緩やかに低下し、高IEC のQPP膜(IEC = 2.0 meq/g)は1000時間後も最大値 の80%程度を保持した.一方QPE-2膜は24時間後以降、 急激にイオン伝導度が低下した.300時間以降は膜が膨 潤変形、イオン伝導度が測定できなかった.ポリフェニ レン構造を取り入れたQPP膜は、従来のポリエーテル QPE-2に比べ優れた安定性を示した.

図10 アルカリ環境中での安定性試験

3-8 溶媒キャスト法による製膜の検討

本研究では溶媒キャスト法により膜を作製している. 実験室レベルでも簡単に実施可能であるが、型を水平に 設置しないと膜厚に偏りが生じ易い. 今後の燃料電池運 転評価にはより大型で均一な膜が必要になってくるた め、昨年よりも均一で大型な膜の成膜法を検討した.

装置の概要は前報とほぼ同様の構造で,低融点金属を 利用した方法を用いた.膜の大きさは,昨年度の150mm ×150mmから250mm×250mmへ約3倍に大型化した.使 用している低融点金属を(株)マシンソル製 治具メタル 90℃→70℃へ変更して型温度むらを改善,より高精度 なガラス型を使用するなどの改良を加えた.

QPE-1 (TMA) 5.0g をDMAc 120ml に溶解させ、ホットプレート55℃でゆっくりと加熱して製膜した. 膜を型から外し、膜厚をダイヤルゲージで25か所測定した結果、膜の厚さは40~98 μ m (平均厚さ58 μ m) と厚みのむらが生じた. これは表面張力の影響により、型枠近くでは膜厚が不均一であったためである. しかし、中央の部分(約150mm×150mm)は、53~63 μ mと非常に均一な膜を得ることができた.

5. 結 言

これまでQPE膜は前駆ポリマーをクロロメチル化し たのち四級化して作製していたが、クロロメチル化反応 は制御が難しく有害な試薬を使用していることから別法 を検討した。はじめに、アミンを有する新たなモノマー をビスフェノール (DHDPE) と各種アミンの Mannich 反 応により合成した、このモノマーを重合し、アミンをア ルキル化剤により四級化する,より簡便なQPE合成法 を確立した、様々なアンモニウム基が定量的に導入可能 となり、長鎖アルキルアンモニウム、環状アンモニウム などをイオン交換基として有するQPE膜を合成して評 価した、アルキル基の導入は膜の含水率を低下させ、ア ルカリ環境中での安定性が向上した. しかし同時にイオ ン伝導度を著しく低下させるため実用的ではないことが 示された. また親水部主鎖のエーテル結合の分解も示唆 された. そこで親水部にエーテル結合を含まないポリ フェニレン構造を導入した電解質膜 (QPP) を新たに合 成した. QPP 膜はポリフェニレンの剛直な構造のため 低い含水率を示すが、膜中の水がイオン伝導に効率的に 利用され、QPE膜より高いイオン伝導を示す優れた膜 であった. 40℃ 1M KOH水溶液中での安定性試験では, QPE 膜は短時間でイオン伝導度が大きく低下したが、 QPP 膜は1000時間後も高いイオン伝導性を維持し、高 い安定性を示した.

謝 辞

研究にあたり適切な助言をいただき、また各種測定・ 評価でも多大なご協力をいただいた山梨大学 クリーン エネルギー研究センター 宮武健治教授に深く感謝いた します.

参考文献

- M.Tanaka, M.Koike, K.Miyatake, M.Watanabe : Polym. Chem., 2, P.99-106 (2011)
- M.Tanaka, K. Fukasawa, E.Nishino, S.Yamaguchi, K.Yamada, H.Tanaka, B. Byungchan, K. Miyatake and M. Watanebe : J. Am. Chem. Soc. 133, P.10646-10654 (2011)
- Nanwen Li, Yongjun Leng, Michael A. Hickner, and Chao-Yang Wang : J. Am. Chem. Soc., 135, P 10124-10133 (2013,)
- Sean A. Nuñez and Michael A. Hickner :ACS Macro Lett., 2, P49-52 (2013)
- 5) 三神武文, 芦澤里樹, 石田正文, 横田尚樹, 島田愛生: 燃料電池用部材への適用を目指した機能性材料に関 する基礎的研究(第2報), 山梨県工業技術センター 研究報告, No.27, P.45 (2013)
- 6) 三神武文, 佐藤貴裕, 西村通喜, 古屋雅章, 横田尚樹, 島田愛生: アニオン交換型燃料電池用電解質膜の研究開発, 山梨県総合理工学研究機構研究成果報告, No.9, P.93 (2014)

成果発表状況

学会発表

 三神武文:ポリアリーレンエーテル系アニオン伝導 膜におけるアンモニウム基の効果、第63回高分子討 論会、長崎大学、2014