## [成果情報名]ICTを活用した肥育豚の個体識別及び体重推定技術の開発

[要 約]水飲み場に個体識別用のカメラ及び体重推定用の 3D カメラを設置し、画像収集 と AI 学習を行うことで、高い精度で肥育豚の個体識別と体重推定を行う技術を開発し た。

[担 当]山梨県畜産酪農技術センター・養豚科・朝日 基

[分 類]研究・参考

\_\_\_\_\_\_

#### [課題の要請元]

畜産課

### [背景・ねらい]

養豚経営では、高齢化や担い手不足に直面しており、労力負担の軽減や飼養管理の効率化が課題となっている。また、経営規模の拡大により飼養頭数が増加し、個体管理が不十分である。そこで少人数でも効率的な養豚経営の実践のため、ICT 技術を活用し、カメラ画像による豚の個体識別技術及び3D カメラ画像による体重推定技術を開発する。

## [成果の内容・特徴]

20 頭程度の飼養規模ハウス豚舎において、LWDB 種を用いて水飲み場に個体識別用のカメラ及び体重推定用の 3D カメラを設置し、画像収集と AI 学習を行ったところ(図1)、

- 1. あらかじめ豚に記入した背番号の数字領域の識別(クラスタリング)精度は 100% である(図 2、表 1)。
- 2. 鼻上部のしわおよび目の写真により、それぞれ平均 93.9%、94.5% と、高い精度での個体識別が可能である(表 2 )。
- 3. 2つの画角から撮影した 3D カメラ (Intel Realsense<sup>TM</sup> depth camera D435) 画像により豚のメッシュの表面積を測定し、実測体重との相関解析により体重を推定する式「W (体重 kg) =247.67× S(表面積㎡) -21.528」が導かれ、延べ 9 頭の豚で体重推定精度を評価した結果、誤差は約 3.9%である(図 3、表 3)。

#### [成果の活用上の留意点]

- 1. LWDB種を用いた結果である。
- 2. 肥育後期に豚を豚舎内に導入し、背番号をスプレーで記入し、数日間、AIに背番号と 撮影画像の紐づけ学習を行わせる必要がある。
- 3. メッシュは、3D画像による深度データをもとに作成する。

#### [期待される効果]

- 1. 養豚農家において、肥育豚の個体管理が可能となることで、疾病の早期発見や適正体重での出荷を実現し、収益向上につながる。
- 2. ICT 技術の活用により、農家の作業効率の向上と、労力負担の軽減につながる。

# [具体的データ]

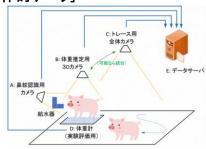



図1 個体識別及び体重推定モデル

表1 背番号クラスタリング精度(%)

| No | 取得画像数 (枚) | 識別精度<br>(%) |
|----|-----------|-------------|
| 1  | 222       | 100         |
| 2  | 244       | 100         |
| 3  | 412       | 100         |
| 4  | 255       | 100         |
| 5  | 357       | 100         |
| 6  | 266       | 100         |
| 7  | 275       | 100         |
| 8  | 246       | 100         |
| 平均 |           | 100         |

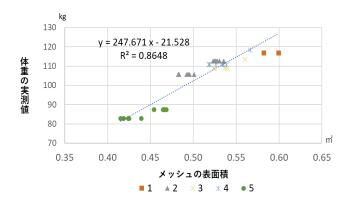



図 3 メッシュ表面積を用いた体重推定式 W(体重 kg) = 247.671 × S(表面積㎡) - 21.528

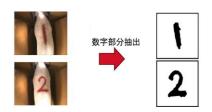



図 2 数字領域の抽出 (クラスタリング\*に活用) (\*数字形状の特徴を基に K-means クラスタリング)

表 2 個体識別精度(%)

|    | 鼻上部のしわ    |             | 目         |           |
|----|-----------|-------------|-----------|-----------|
| No | 取得画像数 (枚) | 識別精度<br>(%) | 取得画像数 (枚) | 識別精度(%)   |
| 1  | 157       | 100.0       | 284       | 100       |
| 2  | 150       | 93.3        | 1,220     | 70.9      |
| 3  | 3,055     | 97.1        | 6, 276    | 99.6      |
| 4  | 708       | 97.9        | 1,498     | 99.7      |
| 5  | 228       | 100.0       | 1,803     | 88.9      |
| 6  | 2, 223    | 67.6        | 4,054     | 90        |
| 7  | 782       | 100.0       | 2,945     | 99.5      |
| 8  | 1, 151    | 71.9        | 2,054     | 99.3      |
| 9  | 1,371     | 99.6        | 4,781     | 98.6      |
| 10 | 730       | 100.0       | 1,787     | 99.2      |
| 11 | 683       | 97.1        | 1,317     | 97.4      |
| 12 | 80        | 87.5        | 82        | 82.4      |
| 13 | 2,200     | 94.6        | 3, 315    | 96.4      |
| 14 | 514       | 99.0        | 928       | 100       |
| 15 | 866       | 96.0        | 1,789     | 90.8      |
| 16 | 2,699     | 100.0       | 4,824     | 99.3      |
| 平均 |           | 93. 9       |           | 94.5      |
|    |           | $\pm 9.7$   |           | $\pm 7.9$ |

表 3 メッシュ表面積による 体重推定精度(%)

| 個体No       | 日付        | 体重の推定値の誤差<br>の平均割合(%) |
|------------|-----------|-----------------------|
| 1          | 2024/7/9  | 6.9                   |
| 2          | 2024/7/9  | -5.1                  |
|            | 2024/7/16 | -3.1                  |
| 3          | 2024/7/9  | 0.8                   |
|            | 2024/7/16 | 3.4                   |
| 4          | 2024/7/9  | -1.3                  |
|            | 2024/7/16 | 0.3                   |
| 5          | 2024/7/9  | 1.0                   |
|            | 2024/7/16 | 6.9                   |
| 誤差の平均値の標準條 | ± 3.9     |                       |
|            |           |                       |

## [その他]

研究課題名:ICT を活用した肥育豚の体重推定及び個体識別技術の開発

予算区分: 総理研

研究期間: 2023~2025年度

研究担当者:朝日基、倉田笙平、木村塁、金子岳大、赤尾友雪

協力分担: 山梨大学工学部